16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49 Q4

50

51

52

53

54

55

23 Q3

80

88

96

106

107

108

109

110

60

61

62

63

64 65

66

67

69

70

72

73

# **Bowel endometriosis: diagnosis and** management

Camran Nezhat, MD, FACOG, FACS; Anjie Li, MD; Rebecca Falik, MD; Daniel Copeland, MD; Gity Meshkat Razavi, MD; Alexandra Shakib, BS; Catalina Mihailide, BA; Holden Bamford, BA; Lucia DiFrancesco, MD; Salli Tazuke, MD; Peiman Ghanouni, MD, ACS; Homero Rivas, MD, FACS; Azadeh Nezhat, MD, FACOG; Ceana Nezhat, MD, FACOG, FACS; Farr Nezhat, MD, FACOG, FACS

#### **Background**

Endometriosis is a chronic, estrogendependent inflammatory condition affecting approximately 10% of all reproductive-aged women and approximately 35-50% of women with pelvic pain and infertility. Endometriosis can be classified as genital vs extragenital.<sup>2</sup> Endometriosis along the bowel is the most common site for extragenital

The most common location of extragenital endometriosis is the bowel. Medical treatment may not provide long-term improvement in patients who are symptomatic, and consequently most of these patients may require surgical intervention. Over the past century, surgeons have continued to debate the optimal surgical approach to treating bowel endometriosis, weighing the risks against the benefits. In this expert review we will describe how the recommended surgical approach depends largely on the location of disease, in addition to size and depth of the lesion. For lesions approximately 5-8 cm from the anal verge, we encourage conservative surgical management over resection to decrease the risk of short- and long-term complications.

Q2 From the Camran Nezhat Institute and Center for Special Minimally Invasive and Robotic Surgery, Palo Alto, CA (Drs Camran Nezhat, Li, Falik, Meshkat Razavi, Tazuke, and A. Nezhat); Stanford University Medical Center, Stanford, CA (Drs Camran Nezhat, Li, Falik, Tazuke, Ghanouni, Rivas, and A. Nezhat); University of California-San Francisco, School of Medicine, San Francisco, CA (Drs Camran Nezhat, Copeland, and A. Nezhat); University of California-Santa Cruz, Santa Cruz, CA (Ms Shakib); University of California-Berkeley, Berkeley, CA (Ms Mihailide); Stanford University, Stanford, CA (Mr Bamford); Università La Sapienza, Obstetrics and Gynecology, Rome, Italy (Dr DiFrancesco); Colorado Center for Reproductive Medicine, San Francisco, CA (Dr Tazuke); Atlanta Center for Minimally Invasive Surgery and Reproductive Medicine, Atlanta, GA (Dr Ceana Nezhat); Nezhat Surgery for Gynecology/Oncology, Lynbrook, NY (Dr F. Nezhat); Weill Cornell Medical College, Cornell University, New York, NY (Dr F. Nezhat); Gynecology and Reproductive Medicine, School of Medicine, Stony Brook University, Stony Brook, NY (Dr F. Nezhat); and Minimally Invasive Gynecologic Surgery and Robotics, Winthrop University Hospital, Winthrop University Hospital (Dr F. Nezhat).

Received May 25, 2017; revised July 19, 2017; accepted Sept. 27, 2017.

The authors report no conflict of interest.

Corresponding author: Farr Nezhat, MD, FACOG, FACS. farr@farrnezhatmd.com

0002-9378/\$36 00

© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ajog.2017.09.023



Click Video under article title in Contents at ajog.org endometriosis.<sup>3,4</sup> Endometriosis of the bowel can manifest as deeply infiltrative lesions of the muscularis or mucosa, or as superficial disease that lines the bowel serosa or subserosal area. It is estimated to affect 3.8-37% of patients with known endometriosis.<sup>5,6</sup> Such significant differences in the estimated incidence may be due to differences in opinion regarding the definition of bowel endometriosis, or a reflection of missed diagnosis. Furthermore, a number of women with bowel endometriosis are diagnosed with other disorders such as irritable bowel syndrome and may never actually be diagnosed with or treated for endometriosis of the bowel.<sup>7</sup>

Multiple theories exist regarding the true pathogenesis of endometriosis, which is complex and likely multifactorial (Table 1). Nezhat and Mahmoud<sup>8</sup> have suggested that the Allen-Masters peritoneal defect may act as a potential pathway to deep infiltrative endometriosis in rectovaginal endometriosis. Deposits of retrograde menstruation may lead to an inflammatory process thereby causing increased risk of adhesion formation and, ultimately, cul-de-sac obliteration. Bowel endometriosis is most frequently found on the rectosigmoid colon, followed by the rectum, ileum, appendix, and cecum, 4,10 with case reports of lesions found in the upper abdomen including the stomach<sup>11</sup>

and transverse colon.<sup>12</sup> Although isolated bowel involvement can be seen, the majority of patients with bowel endometriosis have evidence of disease elsewhere.<sup>4</sup>

Endometriosis, although generally considered a benign disease, may be associated with an increased risk of cancer. The overall risk for endometriosis-associated neoplasm is thought to be up to 1%, with a quarter of these cases involving extraovarian tissue. 13 There have been several published cases of endometriosis-related gastrointestinal (GI) tumors, of which half involve primary adenocarcinoma of the rectosigmoid colon.<sup>14</sup> There remains a paucity of data on how endometriosis may specifically increase the risk of colorectal malignancy; however, evidence demonstrates an increased risk of malignant transformation in patients [T1] with endometrioid or clear cell ovarian carcinoma. 15,16 Thus, benefits of excisional surgery include not only pain relief and a potential increase in fertility, but also potential cancer prophylaxis.

Bowel resection has been performed to treat bowel endometriosis since the early 1900s.<sup>17</sup> Even though over a century has passed, many surgeons have not advanced their practices, with some surgeons still routinely performing segmental resection for bowel endometriosis. 18 Patients thus may be at

| Theory                                                                                                                                                                   | Explanation                                                                                                                                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Retrograde menstruation                                                                                                                                                  | Most commonly cited theory involving retrograde flow during menses                                                                                                                                                                              |  |
| Coelomic metaplasia <sup>1</sup>                                                                                                                                         | Metaplastic extrauterine cells aberrantly differentiate into endometrial cells along visceral or abdominal peritoneum                                                                                                                           |  |
| Benign metastasis                                                                                                                                                        | Where endometrial tissue spreads through lymphatic or hematologic system to ectopic anatomic sites                                                                                                                                              |  |
| Genetic and immune dysfunction                                                                                                                                           | Includes possible apoptosis suppression, greater expression of invasive mechanisms, greater expression of neuroangiogenesis factors, genetic alterations of endometrial cellular function, and oxidative stress and inflammation <sup>2,3</sup> |  |
| latrogenic causes                                                                                                                                                        | For example, endometrial cells can be spread after surgical procedures that involve endometriosis or endometrium itself, with lesions presenting along scars such as laparoscopic port sites and cesarean delivery hysterotomies <sup>4</sup>   |  |
| Anatomical shelter theory <sup>5</sup>                                                                                                                                   | Rectosigmoid colon may act as anatomic barrier that prevents retrograde menstrual flow from spreading cephalad from pelvis, so that more endometriotic implants imbed along pelvis and rectosigmoid than along upper abdominal structures       |  |
| 1 Sourial S, Tempest N, Hapangama DF 2014;2014:179515.                                                                                                                   | K. Theories on the pathogenesis of endometriosis. Int J Reprod Me                                                                                                                                                                               |  |
| 2 Fortunato A, Boni R, Leo R, et al. Vacuoles reproductive success. Reprod Biomed Onlin                                                                                  | Prortunato A, Boni R, Leo R, et al. Vacuoles in sperm head are not associated with head morphology, DNA damage an reproductive success. Reprod Biomed Online 2016;32:154-61.                                                                    |  |
| Nezhat C, Falik R, McKinney S, King LP. Pathophysiology and management of urinary tract endometriosis. Nat Rev Ut<br>2017;14:359-72.                                     |                                                                                                                                                                                                                                                 |  |
| 4 Buka NJ. Vesical endometriosis after cesard                                                                                                                            | ean section. Am J Obstet Gynecol 1988;158:1117-8.                                                                                                                                                                                               |  |
| Vercellini P, Chapron C, Fedele L, Gattei U, Daguati R, Crosignani PG. Evidence for asymmetric distribution of lower intestin tract endometriosis. BJ0G 2004;111:1213-7. |                                                                                                                                                                                                                                                 |  |
| Nezhat. Bowel endometriosis. Am J Obstet (                                                                                                                               | Gynecol 2017.                                                                                                                                                                                                                                   |  |

possible permanent ostomy, for a benign disease process that could have been managed conservatively with more modern surgical techniques. In an effort to decrease postoperative morbidity, conservative approaches including shaving excision and disc resection have been developed, but still all too many surgeons resort to overly aggressive bowel resection. Given the recognized importance for treatment of deeply infiltrative endometriosis of the bowel, surprisingly the current medical literature offers a variety of surgical approaches without an established guideline for which surgical approach is recommended for different patient presentations. This lack of clarity may unsegmental bowel resection. We recognize the confusion that surrounds the surgical management of deeply infiltrative endometriosis of the bowel. Whereas one size does not fit all, there are principles and approaches that may guide the surgeon to perform the most effective and least harmful procedure in particular cases. The aim of this expert review is to help clinicians navigate the management of this complex disease.

#### **Diagnosis**

# Clinical presentation

Clinical suspicion for deeply infiltrative endometriosis and bowel endometriosis starts with a thorough clinical history. It should be suspected in women who report dysmenorrhea, deep dyspareunia,

chronic pain, and/or dyschezia. Some women have catamenial diarrhea, blood in the stool, constipation, bloating, pain with sitting, and radiation of pain to the perineum. The pathogenesis of pain related to endometriosis is complex and multifactorial, with evidence suggesting that there may be an autonomic component explaining why symptoms may mimic that of irritable bowel syndrome.19 Endometriotic involving the enteric nervous system example if they involve Auerbach plexus, Meisner plexus, or the interstitial cells of or a subocclusive crisis. 20,21 The differential diagnosis for these symptoms can be broad, including conditions such as inflammatory or ischemic colitis, radiation colitis, diverticulitis, malignancy, or pelvic inflammatory disease. If bowel endometriosis is not on the clinician's differential, the diagnosis may be missed and patients may go many years before adequate treatment.<sup>7,21</sup>

Physical examination, specifically rectovaginal examination, is often helpful in diagnosis, especially if performed at the time of menstruation, during which time lesions may be more inflamed, tender, and palpable. Findings may include a palpable nodule or a thickened area along the uterosacral ligaments, uterus, vagina, or rectovaginal septum. Visualization of the vagina may reveal a laterally displaced cervix or a blackish-blue lesion.<sup>22</sup> Bowel endometriosis may also be diagnosed incidentally at the time of surgery performed for other indications. Monitoring of CA-125 levels to diagnose and evaluate disease progression in deeply infiltrative endometriosis has been proposed but is of little utility and is not recommended.<sup>23,24</sup>

#### **Imaging modalities**

Transvaginal ultrasound (TVUS) can be used in conjunction with physical exam with an overall high sensitivity and specificity. Details regarding the size, location, depth of infiltration, presence Q5 of bowel lumen stenosis, and quantifi- Q6 cation of nodules are important in preoperative planning. In a meta-analysis Q7 published in 2011, Hudelist et al<sup>27</sup> found the overall specificity of TVUS was high

fortunately contribute to all too many

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

2 American Journal of Obstetrics & Gynecology MONTH 2017

233

251 Q9

 $252^{[F3]}$ 

276

277

278

(92-100%), with a sensitivity of 71-98%. Similarly, Exacoustos et al<sup>25</sup> found the accuracy of detection to range from 76-97%, with the greatest accuracy (97%) found in the detection of bladder lesions and cul-de-sac obliteration. Accuracy of diagnosis is correlated with sonographer experience and even in the best of sonographers' hands. In an effort to address this, the International Deep Endometriosis Analysis group has published methods to obtain quality images, with several published image examples.<sup>26</sup> However, with TVUS, the problem remains that lesions on the sigmoid may be missed as these are typically outside of the field of view.<sup>27</sup> The use of computed tomography-based modified virtual colonoscopy to help predict severity of bowel endometriosis is a novel approach where 25 mm Hg of carbon dioxide is introduced into the rectum and computed tomographyguided images are used to recreate a 3dimensional model of the bowel.<sup>28</sup> It remains experimental but does have findings.<sup>28</sup> promising preliminary Additional imaging options, including magnetic resonance imaging (Figure 3)

#### Medical Management

Medical management may be utilized for symptomatic patients with bowel endometriosis, with the understanding that patients may still require subsequent future surgery. Ovulatory suppression can improve some patients' symptoms, and may be advisable for those who are not surgical candidates or who prefer to avoid surgery. Hormonal suppression has been shown to significantly improve pain and GI symptoms in patients whose degree of bowel stenosis is <60%.<sup>29</sup> It is especially useful to prevent recurrence; after surgery, women who do not desire immediate fertility can be placed on hormonal suppression postoperatively to prevent regrowth of the endometriosis.<sup>22</sup>

and barium enema, are listed in Table 2.

To date, there is no established optimal hormonal regimen for the treatment or prevention of deeply infiltrative endometriosis or bowel endometriosis. General principles treatment include the emphasis on longhormonal suppression term

# FIGURE 1 Vagus nerve hypogastric elvic splanchnic nerve

Innervation of bowel.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

optimization to minimize the side-effect profile to improve patient compliance.<sup>30</sup> Low-dose progestins or combined oral contraceptives are generally well tolerated, and are the first-line medical treatment due to efficacy, minimal side effects, and low cost. Data from a randomized control trial by Vercellini et al<sup>31</sup> demonstrated that both progestins alone or combined with low-dose estrogen decreased symptoms of dysmenorrhea, dyspareunia, and dyschezia. Ferrero et al<sup>32</sup> showed that low-dose norethindrone (2.5 mg daily) can significantly decrease diarrhea, cramping, and cyclic rectal bleeding in women with histologically proven endometriosis, with 53% of the 40 participants reporting significant improvement in GI symptoms. By the end of the 12-month study period, 33% of patients opted to have surgical treatment of their bowel endometriosis due to overly bothersome symptoms.

Several other medical therapies have shown promise, but have been studied on a smaller scale. Fedele et al<sup>33</sup> reported improvement of dysmenorrhea, dyschezia, and pelvic pain in a series of 11 women who received a levonorgestrel intrauterine device. Razzi et al<sup>34</sup> reported use of danazol 200 mg per vagina daily to be well tolerated among a cohort of 21 women with rectovaginal endometriosis, with a significant reduction of pain at the 12-month follow-up.<sup>34</sup> Leuprolide acetate, a gonadotropin-releasing hormone agonist, can also help mitigate symptoms in women with rectovaginal endometriosis and can be used with add-back norethindrone therapy.<sup>35</sup> Leuprolide can also be useful preoperatively to decrease disease burden at the time of surgery. Extensive use of gonadotropinreleasing hormone agonists is often limited by their side-effect profile, namely vasomotor symptoms, as well as concern for decreased bone mineral density if used for >6 months.<sup>36</sup>

#### **Surgical Management**

The exact mode of surgery will depend on surgeon expertise and experience, as 279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

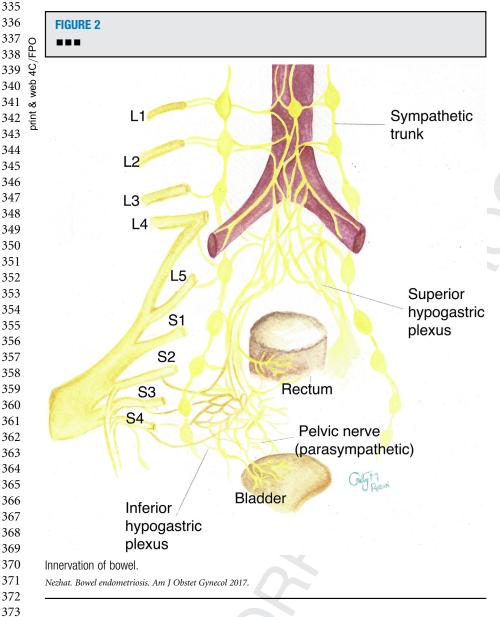
326

327

328

329

330


331

332

333

334

orint & web 4C/FPO R



well as availability of proper instrumentation. Cases of bowel endometriosis must often be managed in a multidisciplinary fashion, often with a minimally invasively trained gynecologic surgeon and involvement of a GI surgeon familiar with endometriosis. 37-44 As determined by the surgeon's experience and access to instrumentation, we recommend video-assisted laparoscopic surgery, with or without robotic assistance. 43-48

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

Several authors have demonstrated the superiority of the laparoscopic approach as compared with laparotomy for the treatment of bowel endometriosis. Studies have consistently shown that minimally invasive approaches result in lower blood loss, shorter length of hospital stay, and few postoperative complications 43-48 with about a 3% conversion rate to laparotomy in the hands of a trained expert.<sup>38</sup> Darai et al<sup>46</sup> published a randomized controlled trial for endometriosis in which 52 patients with colorectal endometriosis were randomly assigned to undergo laparoscopic-assisted or open colorectal resection. There were no differences in long-term outcomes related to postoperative diarrhea, bowel pain, cramping, dyspareunia, or dysmenorrhea. Blood loss was significantly lower in the laparoscopic group (1.6 vs 2.7 mg/L,

P < .05), and this group incurred fewer complications (9 vs 15 patients, P <.16). 39,40 There was also a greater increase in postoperative desired fertility in the laparoscopic group.<sup>29</sup> In another prospective study comparing laparoscopic colorectal resection (n = 33) vs colorectal resection via laparotomy (n = 13) for bowel endometriosis, Ruffo et al demonstrated that those who underwent Q11 laparoscopic resection had a significantly higher postoperative pregnancy rate Q12 (57.6% vs 23.1%, P < -.035).

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

442

443

444

445

446

Surgical approaches fall into 3 general categories: shaving excision, disc resection, and segmental resection. The choice of technique has been the subject of extensive debate and depends on the location of the bowel lesion, depth of infiltration, number of nodules, and presence or absence of stricture. 38,40,48-51 Generally speaking, there are 2 points of view with regard to the choice of surgical technique for bowel endometriosis. Some practitioners advocate more radical approaches with the primary goal of ensuring the complete removal of any possible endometriotic lesions within the bowel. This often achieves excellent outcomes with a relatively low rate of recurrence, but may come at the expense of increased risk of morbidity through lengthy recovery and untoward side effects or complications.<sup>52</sup>

There are an increasing number of surgeons who stress the risk of short- and long-term complications that radical segmental resection and even the more conservative disc excision entail, specifically when there is significant disruption of the surrounding neurovascular structures along the low rectum. 50 Especially at the level of the low rectum, aggressive resection requires extensive dissection of the retrorectal space, where extensive Q10 vascular and sympathetic and parasympathetic nerve bundles are located, including the pelvic splanchnic nerves, and the superior and inferior hypogastric 013 plexus (Figures 1 and 2). Damage to these [F1] 441 structures can lead to short- and long- [F2] term morbidity such as bowel stenosis, bowel ischemia resulting in fistula formation, severe constipation, and urinary retention. 53,54 In other areas of the intestine such as near the ileocecal valve,

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

503

504

505

506

507

508

509

510

511

519

520

521

528

555

556

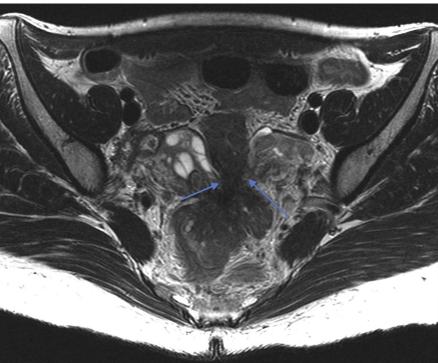
557

558

501

502

complete excisional techniques do not carry risks as severe and may more often be indicated and beneficial to the patient. Our group stresses the importance of evaluating the balance between complete removal of the endometriosis and operative risk to the patient. In fact, no matter the surgical approach, whether it be more conservative shaving, or more radical disc or segmental resection, surgical treatment of bowel endometriosis can lead to longterm beneficial outcomes including


increased fertility and pain relief. 49,50,54,55 Those who advocate complete resection irrespective of the anatomical location cite the benefit of reduced recurrence. However, even with radical segmental resection, occult microscopic endometriosis has been shown to be present in 15% of specimen resection margins.<sup>56</sup> There are multiple documented cases of bowel endometriosis recurring after radical segmental resection. Roman et al<sup>50</sup> estimates that to avoid recurrence in 1 patient at 75 months, 11 patients would need to undergo segmental colorectal resection rather than shaving of the lesion. Moreover, to prevent the risk of a single recurrence that would necessitate repeat operation with a segmental resection, 23 patients would need to be treated initially with segmental resections.<sup>50</sup> Radical surgery, therefore, may not improve overall long-term outcomes as compared with conservative surgery yet is associated with a higher risk of complications.<sup>50</sup>

#### **Shaving excision**

Shaving excision refers to the removal of disease layer-by-layer until healthy, underlying tissue is encountered, and can be considered the most conservative approach to surgical management of bowel endometriosis. 41,42,57,58 Shaving excision can be performed by ablation or resection of invasive and fibrotic endometriotic implants without entering the lumen of the bowel. The aim is to restore the normal soft-tissue anatomical architecture that may have otherwise been distorted by endometriosis and fibrosis. In the case of bowel endometriosis, the aim of shaving excision is to excise all or at least the majority of endometriotic and fibrotic lesions on the bowel while leaving the bowel mucosa and a portion

# FIGURE 3





T2-weighted magnetic resonance revealing bilateral endometriomas. Ovaries are tethered to upper rectum by T2 hypointense fibrotic material consistent with deeply infiltrative endometriosis and cul-de-sac obliteration.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

of the muscularis intact while preserving bowel integrity. 42,43,57-59

Outcomes following shaving excision. Shaving excision has been advocated by experts as a delicate and precise technique to thoroughly treat endometriosis. 42,57,58 extragenital Long-term outcomes following shaving excision are quite favorable, and the complication rate is the lowest among the surgical treatment options for bowel endometriosis. Our group has reported excellent postoperative outcomes since the 1980s. 42,43,54,57,59 We have described patient outcomes following shaving excision in 185 women aged 25-41 years, including 80 patients who had complete cul-de-sac obliteration. Of the 174 patients available for follow-up up to 5 years postoperatively, 162 (93%) achieved moderate to complete pain relief. 42

Donnez et al<sup>60</sup> performed a retrospective analysis describing 3298 surgeries for deep rectovaginal endometriotic nodules, in which the shaving technique was utilized in all but 1% of the patients. The complication rate was low, with 1 case of rectal perforation, 3 cases of ureteral injury, and 1 case of fecal peritonitis. In an earlier series from Donnez et al<sup>61</sup> of 500 patients who underwent shaving of rectovaginal endometriotic nodules, 39 patients (8%) experienced recurrent pelvic pain. Of the 388 patients in his case series who wished to conceive, 221 (57%) became pregnant spontaneously and 107 (28%) conceived with in vitro fertilization.<sup>61</sup>

Roman et al<sup>62</sup> have also reported on the application of rectal shaving using both plasma energy as well as laparoscopic scissors in 54 and 68 women, respectively, with 2 cases of postoperative rectal fistula formation.

|     |     | _ |
|-----|-----|---|
| 559 |     |   |
| 560 |     |   |
| 561 | 025 |   |
| 562 | ŲŽJ | l |
| 563 |     |   |
| 564 |     |   |
| 565 |     |   |
| 566 |     |   |
| 567 |     |   |
| 568 |     |   |
| 569 |     |   |
| 570 |     |   |
| 571 |     |   |
| 572 |     |   |
| 573 |     |   |
| 574 |     |   |
| 575 |     |   |
| 576 |     | ı |

**TABLE 2** 

605

606

607

608

609

610

611

612

613

614

Disc excision

Laparoscopic disc excision with and without the use of the linear or circular stapler for treatment of bowel endometriosis has been described by our and others since the late 1980s<sup>38-41,44,48,49,54,63-66</sup> and is

considered a well-established and feasible surgical option.65-68 It entails full-thickness excision of the diseased portion of the bowel wall with the resultant defect stapled or sutured. To be considered for disc excision, a lesion should be limited to only a portion of the bowel wall, usually less than half of the maximum circumference of the bowel.<sup>52</sup>

excision yields very good outcomes, and results in fewer postoperative complications compared to segmental resection, but has greater risk of complications than shaving excision. 38,39,49,66,69 In 1994, our group first described a series of 8 women who underwent disc excision for bowel endometriosis. Mean length of hospital stay was 3 days, mean lesion size was 4.6 cm, and 1 patient achieved pregnancy.<sup>39</sup> We have subsequently published a series of 141 women who underwent treatment of endometriosis including laparoscopic disc excision of the bowel. There were no cases of conversion to laparotomy, postoperative rectovaginal fistula formation, ureteral damage, bowel perforation, or postoperative pelvic abscess. GI and pain 615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636 637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

| Imaging options for diagnosis of bowel endometriosis |                   |                            |       |
|------------------------------------------------------|-------------------|----------------------------|-------|
|                                                      | Imaging modality  | Description                | Comr  |
|                                                      | TVUS <sup>1</sup> | Areas of tenderness should | Accur |

| Imaging modality                                             | Description                                                                                                                                             | Comments                                                                                                                                                                                         | Sensitivity         | Specificity          |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
| TVUS <sup>1</sup>                                            | Areas of tenderness should<br>be evaluated closely as they<br>may point to subtle disease <sup>2</sup>                                                  | Accuracy of diagnosis correlated with sonographer experience <sup>3</sup> Lesions above sigmoid generally are outside of view <sup>3</sup>                                                       | 71—98% <sup>3</sup> | 92-100% <sup>3</sup> |
| Rectal water contrast transvaginal sonography <sup>1,4</sup> | 100—300 mL water instilled into rectum prior to TVUS                                                                                                    | Provides enhanced imaging with TVUS probe <sup>5</sup>                                                                                                                                           | 95.7% <sup>5</sup>  | 98% <sup>5</sup>     |
| Rectal endoscopic sonography <sup>1</sup>                    | Specialized high-frequency transducer coupled with colonoscope placed into rectum to level of sigmoid; enema and anesthesia often required <sup>6</sup> | Accuracy of diagnosis correlated with sonographer experience <sup>7</sup> Gives information regarding depth of invasion of lesion <sup>7</sup>                                                   | 88.2% <sup>5</sup>  | 96% <sup>5</sup>     |
| Magnetic resonance imaging <sup>1</sup>                      | Endoluminal coil can be placed in rectum to better visualize rectal lesions but use can be limited by patient discomfort                                | Not operator dependent Provides information for lesions above sigmoid colon Lacks sensitivity for measuring depth of invasion of lesion                                                          | 88%8                | 97.8%8               |
| Double contrast<br>barium enema                              | Distends colon with barium,<br>draining colon, and filling lumen with<br>air prior to taking AP radiographs                                             | Evaluates degree and length of bowel occlusion at level of sigmoid <sup>9</sup> Difficult to distinguish between other bowel pathologies (neoplasm, pelvic abscess, diverticulitis) <sup>9</sup> | 87.5% <sup>5</sup>  | 94.2% <sup>5</sup>   |

TVUS, transvaginal ultrasound.

- 1 Nisenblat V, Bossuyt PM, Farquhar C, Johnson N, Hull ML. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016;2:CD009591.
- Guerriero S, Ajossa S, Gerada M, Virgilio B, Angioni S, Melis GB. Diagnostic value of transvaginal 'tenderness-guided' ultrasonography for the prediction of location of deep endometriosis. Hum Reprod 2008;23:2452-7.
- 3 Hudelist G, English J, Thomas AE, Tinelli A, Singer CF, Keckstein J. Diagnostic accuracy of transvaginal ultrasound for non-invasive diagnosis of bowel endometriosis: systematic review and metaanalysis. Ultrasound Obstet Gynecol 2011;37:257-63.
- Menada MV, Remorgida V, Abbamonte LH, Fulcheri E, Ragni N, Ferrero S. Transvaginal ultrasonography combined with water-contrast in the rectum in the diagnosis of rectovaginal endometriosis infiltrating the bowel. Fertil Steril 2008;89:699-700.
- Bergamini V, Ghezzi F, Scarperi S, Raffaelli R, Cromi A, Franchi M. Preoperative assessment of intestinal endometriosis: a comparison of transvaginal sonography with water-contrast in the rectum, transrectal sonography, and barium enema. Abdom Imaging 2010;35:732-6.
- Massein A, Petit E, Darchen MA, et al. Imaging of intestinal involvement in endometriosis. Diagn Interv Imaging 2013;94:281-91.
- Bazot M, Detchev R, Cortez A, Amouyal P, Uzan S, Darai E. Transvaginal sonography and rectal endoscopic sonography for the assessment of pelvic endometriosis: a preliminary comparison. Hum Reprod 2003;18:1686-92.
- 8 Bazot M, Darai E, Hourani R, et al. Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 2004;232:379-89.
- 9 Gordon RL, Evers K, Kressel HY, Laufer I, Herlinger H, Thompson JJ. Double-contrast enema in pelvic endometriosis. AJR Am J Roentgenol 1982;138:549-52.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

Following shaving excision, the study of

Roman et al<sup>62</sup> demonstrated excellent outcomes, with 4% of patients experiencing symptom recurrence, a pregnancy rate of 65.4% among patients with pregnancy intention, with 59% of those women conceiving spontaneously.

Outcomes following disc excision. Disc

symptoms had improved by the end of the first postoperative month in 87% patients.45

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

In 2016, Afors et al<sup>70</sup> performed an observational study describing patients who underwent shaving (n = 47), disc (n = 15), and segmental resection (n =30); for all cohorts, they reported a significant reduction in short- and longterm pain including dysmenorrhea, dyschezia, and dyspareunia 3 months postoperatively. Those who underwent shaving excision and disc resection, however, were more likely to experience recurrence of symptoms requiring reoperation as compared with segmental resection (shaving: 27.6%; disc: 13.3%; segmental: 6.6%). Although the sample size is limited, the study suggests that disc excision may be performed safely with very good results, though results may not be as permanent as with segmental resection.

In a 2011 retrospective study by Moawad et al<sup>71</sup> comparing low anterior disc (n = 8) vs low anterior segmental (n = 14) resection, the disc resection cohort had shorter surgical times (4 vs 7 hours), lower blood loss (134 vs 276 mL), and shorter length of hospital stay (3 vs 5 days). There were no intraoperative complications in either cohort. There was no significant difference in size of lesion excised, and neither group had visceral complications, although there were 3 patients in the segmental resection cohort who had postoperative anastomotic strictures, with 2 patients requiring subsequent rectal dilation. In contrast, there were no perioperative complications in the disc resection group. Both groups reported high levels of patient satisfaction postoperatively.<sup>71</sup> The study of Moawad et al,<sup>71</sup> although based on a small cohort, suggests that both disc and segmental resection improve patients' symptoms, but that disc excision is a more technically straightforward surgical procedure with fewer complications, especially when the lesion is located lower down in the intestinal tract. Further discussion of the location of lesions in determining which excisional technique a surgeon should consider will be reviewed below.

#### Segmental resection

Segmental resection of endometriosis has been documented in the medical literature since 1907, 17,72,73 and has the largest body of data regarding postoperative outcomes. As the name suggests, this approach involves the complete resection of a diseased segment of bowel with subsequent reanastomosis. Segmental resection is indicated for large, circumferential, obstructive, or multifocal lesions. Primary end-to-end or side-to-side anastomosis can be performed following segmental resection. Segmental resection was once considered too difficult to complete without an open abdominal incision; however with the introduction of video-assisted laparoscopy, specialized laparoscopic instruments, and increasing surgical subspecialization and training, many surgeons are able trained invasive utilize minimally approaches to improve clinical outcomes. 21,37,44,46,48,54,71,74-77 For segmental resections, a multidisciplinary approach is recommended with the involvement of a GI surgeon or gynecologic oncologist who is trained in per-

Outcomes following segmental resection. Since the late 1980s and early 1990s, our group has performed laparoscopic rectosigmoid resection of pathology-proven endometriosis. 21,37,40,41,44,54,57 favorable outcomes and fewer complications associated with disc and shaving excision, we now avoid segmental resection whenever possible, especially for lesions close to the anal verge. In 2005 our group reported on a cohort of 178 women who underwent laparoscopic treatment of deeply infiltrative bowel endometriosis utilizing shaving excision (n = 93), disc excision (n = 38), and segmental resection (n = 47).<sup>54</sup> The rate of major complications was significantly higher among those who underwent segmental resection (P < .001); 6/ 48 (12.5%) had the following complications: ureterovaginal fistula (1/48, 2%), anastomotic stricture (2/48, 4%), intraoperative bladder perforation (1/48, 2%), rectal bleeding requiring transfusion (1/48, 2%), and anastomotic leak

forming bowel resections.

requiring temporary colostomy (1/48, 2%). Of those who underwent disc excision, in contrast, only 3/39 (7.7%) developed a serious complication, including 2/39 (5%) who developed a pelvic abscess, and 1/39 (3%) who developed a rectovaginal fistula. Notably, there were no major complications encountered among patients who underwent shaving excision. Pregnancy among infertility patients who had either shaving or disc excision was higher (13/36, 36%, and 4/9, 44%, respectively) than those who had segmental resection  $(2/11, 18\%)^{.54}$ 

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

In 2011, De Cicco et al<sup>55</sup> performed a systematic review of 1889 bowel resections for deep endometriosis. Mean operating time varied from 101-436 minutes, with hospitalizations ranging from 4-14 days. Major complications occurred in 11% of women, including a leakage rate of 2.7%, a fistula rate of 1.8%, severe obstruction rate of 2.7%, and a hemorrhage rate of 2.5%. 55 Location of the lesion was inconsistently documented in the studies that De Cicco et al<sup>55</sup> reviewed, but it was noted that many of these complications correlated with lower rectal location of the segmental resection: the lower the resection, the higher the probability of postoperative leakage.<sup>74</sup> Riiskjær et al<sup>77</sup> published a prospective analysis of 128 patients who underwent segmental resection for bowel endometriosis and found long-term improvement in urinary and sexual function 1 year after surgery. However, the rate of anastomotic leakage was 7.4%.

Although the complication rate may be higher with segmental resection, it is location-dependent. Segmental resection remains a critical tool for treating bowel endometriosis in certain circumstances, such as in patients whose symptoms persist after shaving or disc excision. De Cicco et al<sup>55</sup> noted complete pain relief to be 81.5% (111/135) with segmental resection patients, and some studies suggest shaving excision may be less effective in the symptomatic relief of dysmenorrhea and dyspareunia.<sup>70</sup> Our group has found complete pain relief to be high with segmental resection but also with the other surgical excision

FIGURE 4

783

784

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

 $817^{\textbf{[F4]}}$ 



Dissection of inferior hypogastric nerves.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

techniques: 80% (74/93) after shaving excision, 95% (36/38) following disc excision, and 89% (42/47) following segmental resection.<sup>54</sup>

#### **Nerve-sparing surgery**

Whether shaving, disc, or segmental resection of bowel endometriosis is performed, a surgeon's complication rate may depend on adequately avoiding involved nerves. Deeply infiltrative endometriosis can invade the superior and inferior hypogastric plexus, as well as the sympathetic and parasympathetic nerve bundles (Figures 1, 2, and 4). Disruption of these structures may worsen reproductive, genitourinary, and GI symptoms and negatively affect quality of life.<sup>2,78</sup> The incidence of postoperative urinary tract disorders following surgery for bowel endometriosis is estimated to be as high as 19.5% due to interruption of the nervous plexus, especially the hypogastric plexus. 75,76 Nerve-sparing techniques have therefore been introduced to preserve bowel, bladder, and sexual function. 79,80 One successful nerve-sparing method, which we utilize in our practice, is the Tokyo method, in which the surgeon separates and ligates the vascular portion of the cardinal ligament while preserving the branches of the pelvic splanchnic nerves.81 Kockel et al introduced a different technique, using liposuction to expose the autonomic peripheral nerves to minimize damage to the pelvic plexus, whereas Possover et al<sup>82</sup> utilized electrostimulation to identify and preserve these nerves. However, increased severity of disease leads to increased risk of dense nervous plexus involvement, which may preclude nerve-sparing.

Long-term results of nerve-sparing techniques in regard to bowel endometriosis surgery are limited but favorable. With the nerve-sparing technique, Ceccaroni et al<sup>79</sup> performed a single-center prospective study of 126 patients, and found reduced incidence of bowel and bladder dysfunction as well as higher rates of patient satisfaction, with similar rates of intraoperative complications as compared to traditional methods for surgical excision of bowel endometriosis. Although data are limited, nerve-sparing techniques appear promising for decreasing postoperative complications. More research is needed to make the practice more widespread.

# Decisions involved in surgical approach

We emphasize foremost that asymptomatic patients do not warrant surgical intervention. For symptomatic patients, the choice between surgical techniques depends upon the anatomic location, size, and depth of the endometriotic bowel lesion. We categorize lesions by location. The physiologic attachments of the sigmoid colon and peritoneal reflection along the left pelvic sidewall are the anatomic landmarks we recommend using when deciding on surgical approach. We categorize lesions as: (1) above the sigmoid colon; (2) on the sigmoid colon; (3) on the rectosigmoid colon; and (4) on the rectum. In addition to location, lesion size, depth of involvement (when the endometriotic lesion either compresses or invades the lumen of the bowel), and extent of bowel wall circumferential invasion are taken into account.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

Location is paramount in deciding on excisional technique because ideally a surgeon will avoid dissection of the retrorectal space and lateral pelvic sidewall (Table 3). Dissection of [T3] these spaces risks disruption of the superior and inferior hypogastric plexus, parasympathetic and sympathetic nerve branches, and local vascularity. Such injuries can lead to long-term autonomic dysfunction of the bowel and bladder, which may ultimately necessitate long-term self-catheterization or permanent colostomy.<sup>53</sup> Specifically, dissection of the retrorectal space puts the patient at higher risk for ureterovaginal fistula, anastomotic stricture, intraoperative genitourinary complications, rectal bleeding requiring transfusion, and anastomotic leakage requiring temporary ostomy. 21,54,74-77 With severe disease, nerve involvement may be encountered, and complete resection may render damage to these structures unavoidable. However, we emphasize the importance of prudence, and strongly advise conservative surgery whenever possible. These potential harms rarely outweigh the benefits of radical excision of bowel endometriosis.

#### Lesions found incidentally

When bowel lesions are found incidentally at the time of another surgery, extensive dissection during the initial surgery is not generally advisable, especially if the patient has ajog.org Expert Review

endorsed minimal GI symptoms. For surgeons capable of performing shaving excision, lesions that are amenable to safe excision can be removed and sent to the pathologist for histological analysis. This can serve to prove the presence of endometriosis of the bowel in symptomatic patients, may in fact fully treat the patient's symptoms, and is used to rule out malignancy. It is reasonable to subsequently plan for a future surgery with the assistance of a multidisciplinary team including a GI surgeon should a patient's symptoms persist.

 $945^{\boldsymbol{[F5]}}$ 

#### Lesions above the sigmoid colon

Dissection above the sigmoid colon typically does not require extensive retroperitoneal interruption, and risk of injury to the nervous and vascular plexuses is lower. As such, segmental or disc resection is feasible with a lower risk of intraoperative and postoperative complications. Dissection should be performed preferentially along the antimesenteric surface of the bowel to spare the vascular and nervous plexuses housed in the mesentery itself.

Segmental resection with a tension-free anastomosis is preferred for multifocal lesions, or for lesions >3 cm. Segmental resection for lesions involving more than one third of the lumen of the upper bowel is generally advisable. Disc resection can be considered for lesions <3 cm even if the bowel lumen is involved. We have found that laparoscopic disc excision using the linear stapler is more straightforward with minimal leakage complications, perioperative pain, and morbidity.

For lesions on the distal small bowel, ileocolic region, right hemicolon, and appendix, segmental resection is recommended as the surgery itself is relatively straightforward, and risk of nerve damage is very low (Figure 5). 4,53,54,84 If endometriosis is encountered in any location along the bowel, appendectomy can be performed even if there is no visible disease on the appendix due to the high incidence of occult appendicular endometriosis. 85,86

| TABLE 3 Guidelines surrou        | unding surgical management of bowel endometriosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lesions found incidentally       | <ul> <li>Extensive dissection not advisable</li> <li>Recommendation is for shaving excision and biopsy</li> <li>Patient to be followed up and evaluated clinically and hormonally</li> <li>Reasonable to expect and plan for future surgery with multidisciplinary team if patient becomes symptomatic and nonresponsive to medical therapy</li> </ul>                                                                                                                                                                                                                                                                      |
| Lesions above sigmoid colon      | <ul> <li>Segmental resection or disc excision can be performed safely</li> <li>Segmental resection is preferable for multifocal lesions, lesions &gt;3 cm, or lesions involving &gt;1/3 of bowel lumen</li> <li>Segmental resection is straightforward approach for disease located on ileocecal region, as well as small bowel in cases of stricture</li> <li>For singular lesions &lt;3 cm in size or &lt;1/3 of bowel lumen, disc excision can be considered</li> </ul>                                                                                                                                                  |
| Lesions along sigmoid colon      | <ul> <li>When possible, we prefer utilizing shaving excision</li> <li>Starting at this level, surgeons should be aware that extensive lateral dissection may lead to short- and long-term complications</li> <li>For lesions &lt;3 cm, or involving &lt;1/3 of bowel lumen, disc excision can be performed</li> <li>Segmental resection can be performed if obstruction is encountered, there is multifocal disease, lesion is &gt;3 cm in size, or patient has history of failed conservative surgical management</li> </ul>                                                                                               |
| Lesions along rectosigmoid colon | <ul> <li>When possible, we prefer to utilize shaving excision</li> <li>Additional options include disc resection or segmental resection (via laparoscopy, laparotomy, or natural orifice); however, surgeons must exercise extreme caution to minimize dissection of lateral and retrorectal space</li> </ul>                                                                                                                                                                                                                                                                                                               |
| Lesions along rectum             | <ul> <li>We strongly advocate for shaving excision at this level due to risk of complications when aggressive surgery is performed within 5—8 cm of anal verge</li> <li>We err on side of leaving disease on rectum, with consideration made for postoperative hormonal suppression, rather than risk injuring rectum itself or neurovascular structures surrounding rectum</li> <li>We minimize lateral dissection, as well as dissection of retrorectal space</li> <li>Theoretically, patients with acute obstruction at this level still require segmental resection, but this clinical scenario is very rare</li> </ul> |

#### Lesions along the sigmoid colon

Along the sigmoid, we emphasize the importance of limiting dissection of the retrorectal space to minimize the risk of long-term morbidity (Video). Segmental resection at or below the sigmoid, and even the relatively more conservative disc excision that involves bowel mobilization laterally and posteriorly, has been associated with significant risk of postoperative surgical-site leakage, 4 as well as long-term bowel and bladder dysfunction with risk of permanent colostomy. 87,88

We primarily utilize shaving excision for disease on the sigmoid colon.

Whenever shaving technique is utilized, especially along the sigmoid and rectosigmoid colon, thorough evaluation of the bowel wall thickness should be performed for defects along the bowel wall. Significant defects should be reinforced Q15 with suture. Should the surgeon believe more extensive excision to be necessary, disc excision can be performed for lesions <3 cm or involving less than one third of the lumen without significant retroperitoneal and lateral pelvic wall dissection. Segmental resection can be performed if colonic obstruction is encountered; if lesions are multifocal, >3 cm, or involve more than two thirds

FIGURE 5

1007

1008

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050 1051

10524

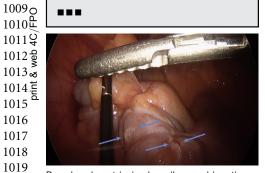
1053 ਊ

1054 ≈

1055.5

1056

1057


1058

1059

1060

1061

1062



Bowel endometriosis along ileocecal junction. Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

of the bowel lumen; or if patients have a history of failed conservative surgical management. The patient must be counseled, however, regarding the higher risk for postoperative bowel dysfunction. If resection is performed, entry into the retrorectal space and lateral pelvic wall should be minimized and a tension-free anastomosis is paramount.

#### Lesions along the rectosigmoid colon

At the level of the rectosigmoid colon, surgeons must exercise extreme caution. Here, segmental resection can be approached through the natural Resection requires significant lateral mobilization and entry into the retrorectal space to allow for adequate bowel mobilization. To avoid significant postoperative complications as

previously described, we recommend using shaving excision whenever possible, and avoiding segmental resection in this area even with lesions >3 cm unless prior surgeries have failed. Disc excision can be done, but must be performed with caution. The Rouen technique has been introduced as a feasible transanal approach for the disc resection of large lesions.<sup>83</sup> Complications following disc excision include pelvic abscess and rectovaginal fistula, although with less frequency than with segmental resection. 21,54,89 The lower the dissection, the higher the risk.

#### Lesions along the rectum

Although others have suggested disc resection or even segmental resection at this level, <sup>70,90,91</sup> we use shaving excision as much as possible due to the higher postoperative risk to the patient. There is no evidence that benefits of segmental resection outweighs the risks when compared with conservative surgery level, 50,60,92 with evidence suggesting aggressive surgery 5-8 cm from the anal verge (Figure 6) may be predictive of postoperative complications.<sup>93</sup> These lower endometriotic lesions typically cannot be accessed by the linear stapler, and although a transrectal approach to disc excision has been suggested, 40,90 the necessary extensive dissection of the bowel can lead to serious neurologic and vascular complications as described

above. Theoretically, patients with acute obstruction of the low rectum due to deeply infiltrative endometriosis would require segmental resection with subsequent ostomy; however, this scenario is very rare.

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

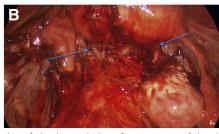
1115

1116

1117

1118

Using the shaving technique along the rectum, we excise as much disease as possible without compromising the bowel lumen, and limiting lateral dissection that could compromise the sympathetic and parasympathetic nervous plexus. We err on the side of leaving disease on the rectum rather than risk perforating the bowel. For patients who do not desire fertility, a risk-benefit discussion regarding bilateral salpingo-oophorectomy with or without hysterectomy should be considered in lieu of aggressive segmental or disc resection of the rectum. 94,95 We emphasize that infertility is not an indication for aggressive bowel surgery. In fact, for patients interested in fertility, successful pregnancy is very often achieved even in cases of severe disease with bowel stricture treated using the shaving technique.<sup>54</sup> For a subset of these patients who require second-look lapa- [F6] roscopy following their delivery (often for subsequent infertility), we have frequently encountered regression of rectal endometriosis well beyond what shaving from their prior surgery alone could explain. We do not have a clear explanation as to why there seems to be regression of bowel endometriosis spontaneously following pregnancy. We recognize that using pregnancy as an endpoint is difficult to correlate definitively with surgical management as there are many confounders, including use of in vitro fertilization, age, male factor, and ovarian surgery. For now, we reiterate that this finding may also reflect the enigmatic nature of endometriosis.


# **Complications**

Complications are a reality for surgeons, especially for those who perform complex procedures. Our rate of adverse outcomes has been very low, and by avoiding aggressive

orifices of the rectum or vagina. 40,44,83

FIGURE 6





A, Endometriosis of rectovaginal septum. B, Initiation of shaving technique for treatment of deeply infiltrative endometriosis of rectovaginal septum.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

10 American Journal of Obstetrics & Gynecology MONTH 2017

# 1120 1121 1122 1123 1124 1125 1126 (226 1127 1128 1129 1130 1131 1132 1133 1134 1135

**TABLE 4** 

#### Postoperative complications and management guidelines

## Complication

anastomotic leak

#### **Management guidelines**

Intestinal perforation or

- History and physical exam, with hospital admission
- With low threshold for laboratory evaluation including complete blood cell count, basic metabolic panel, coagulation studies, and lactic acid
- CT with IV contrast and oral Gastrografin is recommended
- If CT reveals abscess, this can be drained either by interventional radiology or by second-look laparoscopy with thorough wash-out and IV administration of broad-spectrum antibiotics and possible surgical repair
- Even if CT does not demonstrate pathology, surgeon must still maintain high index of suspicion if clinical exam is concerning; we recommend starting broad-spectrum antibiotics and placing patient on bowel rest if patient is febrile, has pain out of proportion to routine postoperative soreness, has abdominal distension, or if leukocytosis is present; when antibiotics are initiated, sites of microperforation may seal spontaneously without need for further intervention1
- Should patient not exhibit clinical improvement quickly, or if laboratory values stagnate or worsen, second-look laparoscopy can be done if there is expert surgeon available for thorough washing or possible bowel repair
- If expert laparoscopist is not available for second-look surgery, gastrointestinal surgeon specializing in endoluminal surgery can be consulted for endoscopic repair of defect
- If second-look surgery does not cure patient, or if patient is septic at time of her second-look laparoscopy, temporary ostomy (preferably loop ileostomy) should be considered

### Bleeding from anastomotic site

- On differential diagnosis if patient reports rectal bleeding or becomes hemodynamically unstable
- Patient should be evaluated immediately, hemoglobin level trended, and transfusion may be required; if brisk bright-red bleeding is encountered, hospital admission should be arranged
- Control of bleeding at surgical bed can be approached laparoscopically or via colonoscopy by gastrointestinal
- Once site of bleeding is localized, it can be controlled using suture, laparoscopic stapling device, clip, or hemostatic agents

# Rectovaginal fistula

- Conservative therapy can be considered in otherwise healthy patient with rectovaginal fistula when patient is not febrile or ill,<sup>3</sup> including usage of stool-firming medications with low residue diet to add bulk to stool, with avoidance of stool softeners and laxatives
- As vaginal outflow drainage site is typically present, patients generally feel well otherwise; usually, rectovaginal fistula will heal spontaneously<sup>4</sup>
- Fistulas that persist >3-6 mo are unlikely to resolve without intervention and typically need surgical repair; referral to proper specialist(s), including but not limited to gastrointestinal, urogynecologic, colorectal, or gynecologic-oncologist, is appropriate
- Repair options include but are not limited to, patching area with biologic tissue specimen, using autologous tissue graft, and/or sewing of anal fistula plug<sup>5</sup> For certain complex or recurrent cases such as with concomitant inflammatory bowel disease, temporary os-
- tomy, preferably ileostomy, can be considered prior to definitive surgical correction

CT, computed tomography; IV, intravenous.

- 1 Araghizadeh FY, Timmcke AE, Opelka FG, Hicks TC, Beck DE. Colonoscopic perforations. Dis Colon Rectum 2001;44:713-6.
- 2 Kumar N, Thompson CC. A novel method for endoscopic perforation management by using abdominal exploration and full-thickness sutured closure. Gastrointest Endosc 2014;80:156-61.
- 3 Francis AP, Apostol R, Mrkaic A, Berman T, Sirota I, Nezhat F. Conservative management of coloperitoneal-vaginal fistula. JSLS 2015;e2015.00015.
- 4 Debeche-Adams TH, Bohl JL. Rectovaginal fistulas. Clin Colon Rectal Surg 2010;23:99-103.
- 5 O'Riordan JM, Datta I, Johnston C, Baxter NN. A systematic review of the anal fistula plug for patients with Crohn's and non-Crohn's related fistula-in-ano. Dis Colon Rectum 2012;55:351-8.
- 6 Williamson PR, Hellinger MD, Larach SW, Ferrara A. Twenty-year review of the surgical management of perianal Crohn's disease. Dis Colon Rectum 1995;38:389-92.
- 7 Tsang CB, Rothenberger DA. Rectovaginal fistulas. Therapeutic options. Surg Clin North Am 1997;77:95-114.

Nezhat. Bowel endometriosis. Am J Obstet Gynecol 2017.

1164 1165 1166

1167

1168

1169

1170

1171

1172

1173

1174

1155

1156

1157

1158

1159

1160

1161

1162

1163

surgery at the level of the low rectum, we have decreased our rate of complications even further. Nonetheless, we have successfully diagnosed and managed a variety of postoperative complications, and all surgeons who perform bowel endometriosis surgery should be prepared to do likewise.

During the preoperative consent process, patients should be well informed of the immediate operative risks and risk for long-term functional changes.<sup>96</sup> Potential perioperative complications should be discussed include stricture, obstruction, infection, perforation, fistula formation, anastomotic leakage, and

perioperative hemorrhage. 55,74 With any bowel surgery, risk of intestinal perforation and leakage are possible, although to a much lesser extent with superficial shaving excision. Proper surgical technique maintains wellvascularized, tension-free anastomoses to minimize risk of an anastomotic leak.4,21,46,55

1175

1176

1214 1215 1216

1217 1218 1219

> 1220 1221 1222

For better postoperative recovery, we advocate the enhanced recovery after surgery<sup>97</sup> protocol and close communication with the patient by daily telephone calls and as-needed in-office exams. With every passing day, the patient should experience overall symptom improvement. 1240[T4] Table 4 outlines a brief list of possible postoperative complications, guidelines surrounding proper postoperative management.

#### **Conclusions**

1231

1232

1233

1234

1235

1236

1237

1238

1239

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

Deep infiltrative endometriosis of the bowel may have various presentations. Unfortunately, it often goes diagnosed, while in other instances it continues to be overaggressively treated. Bowel endometriosis can be encountered incidentally at the time of surgery performed for another indication, or it may be suspected when a premenopausal woman has significant pelvic pain, bloating, cyclic dyschezia, blood in the stool, changes in stool caliber, or irritable bowel syndrome—like symptoms. If a patient is relatively asymptomatic, close monitoring with long-term hormonal ovarian suppression is preferred over surgical management.

In the symptomatic patients who are not candidates for or who have failed medical therapy, a multidisciplinary surgical approach with the involvement of gynecologic and GI specialists familiar with bowel endometriosis is encouraged. Some suradvocate for segmental resection of the bowel as the treatment of choice for endometriosis at all levels of the bowel. Based on our extensive experience in conjunction with thorough and frequent review of current literature, we preferentially perform shaving excision for lesions below the sigmoid colon to avoid extensive lateral mobilization and dissection of the lateral and retrorectal spaces and avoid compromise of longterm bowel and bladder function. Indeed, patient results and satisfaction remain high following shaving excision and the complication rate following shaving excision is the

lowest among the surgical options, 49,60,62 with favorable long-term outcomes. 42,61,62 We employ the shaving technique as much as possible for the treatment of endometriosis located below the sigmoid colon, especially for lesions on the low rectum. 42,57 For lesions above the sigmoid colon, including the small bowel, segmental resection or disc resection remains our preference.

#### **KEY POINTS**

- Endometriosis affects up to 10% of all reproductive-aged women, and affects approximately 35-50% of women with pelvic pain and infertility.
- The bowel is the most common site of extragenital endometriosis and is most frequently seen along the rectum, rectovaginal septum, and sigmoid colon.
- Surgical management is recommended for symptomatic patients with bowel endometriosis who have failed medical therapy, or in whom medical therapy is not indicated.
- Laparoscopy with or without the use of the robotic platform can be used for treatment of bowel endometriosis.
- Acute obstruction due to bowel endometriosis is rare and should generally be managed with segmental resection.
- · Lesions along the low rectum should generally be preferentially managed conservatively with shaving excision first rather than with disc or segmental resection, to avoid extensive dissection of the retrorectal space and lateral spaces along the pelvic side wall to minimize nervous and vascular injury.

#### REFERENCES

- 1. Giudice LC. Clinical practice. Endometriosis. N Engl J Med 2010;362:2389-98.
- 2. Nezhat C, Falik R, McKinney S, King LP. Pathophysiology and management of urinary tract endometriosis. Nat Rev Urol 2017;14:
- 3. Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med 2014;2014:179515.
- 4. Veeraswamy A, Lewis M, Mann A, Kotikela S, Hajhosseini B, Nezhat C. Extragenital endometriosis. Clin Obstet Gynecol 2010;53:449-66.
- 5. Redwine DB. Ovarian endometriosis: a marker for more extensive pelvic and intestinal disease. Fertil Steril 1999;72:310-5.
- 6. Weed JC, Ray JE. Endometriosis of the bowel. Obstet Gynecol 1987;69:727-30.

- 7. Skoog SM, Foxx-Orenstein AE, Levy MJ, Rajan E, Session DR. Intestinal endometriosis: the great masquerader. Curr Gastroenterol Rep 2004:6:405-9.
- 8. Nezhat FR, Mahmoud MS. Allen-Masters peritoneal defect: a potential pathway to deep infiltrating rectovaginal endometriosis? J Minim Invasive Gynecol 2014;21:321-2.
- 9. Nezhat C BE, Paka C, Nezhat C, Nezhat F. Video-assisted laparoscopic treatment of endometriosis. In: Nezhat C NF, Nezhat C, eds. Nezhat's video-assisted and robotic-assisted laparoscopy and hysteroscopy. New York: Cambridge University Press; 2013.
- 10. Redwine DB. Intestinal endometriosis. Surgical management of endometriosis. Informa Healthcare; 2004.
- 11. laroshenko VI, Salokhina MB. Endometriosis of the stomach [in Russian]. Vestn Khir Im II Grek 1979;123:82-3.
- 12. Hartmann D, Schilling D, Roth SU, Bohrer MH, Riemann JF. Endometriosis of the transverse colon-a rare localization [in German]. Dtsch Med Wochenschr 2002;127: 2317-20.
- 13. Benoit L, Arnould L, Cheynel N, et al. Malignant extraovarian endometriosis: a review. Eur J Surg Oncol 2006;32:6-11.
- 14. Jones KD, Owen E, Berresford A, Sutton C. Endometrial adenocarcinoma arising from endometriosis of the rectosigmoid colon. Gynecol Oncol 2002;86:220-2.
- 15. Nezhat FR, Pejovic T, Reis FM, Guo SW. The link between endometriosis and ovarian cancer: clinical implications. Int J Gynecol Cancer 2014;24:623-8.
- 16. Nezhat FR, Apostol R, Nezhat C, Pejovic T. New insights in the pathophysiology of ovarian cancer and implications for screening and prevention. Am J Obstet Gynecol 2015;213:262-7.
- 17. Nezhat C, Nezhat F, Nezhat C. Endometriosis: ancient disease, ancient treatments, Fertil Steril 2012;98:S1-62.
- 18. Macafee CH, Greer HL. Intestinal endometriosis. A report of 29 cases and a survey of the literature. J Obstet Gynaecol Br Emp 1960;67: 539-55.
- 19. Stratton P, Berkley KJ. Chronic pelvic pain and endometriosis: translational evidence of the relationship and implications. Hum Reprod Update 2011;17:327-46.
- 20. Remorgida V, Ragni N, Ferrero S, Anserini P, Torelli P, Fulcheri E. The involvement of the interstitial Cajal cells and the enteric nervous system in bowel endometriosis. Hum Reprod 2005;20:264-71.
- 21. Kopelman D KL, Nezhat C. Laparoscopic management of intestinal endometriosis. In: Nezhat C NF, Nezhat C, eds. Nezhat's videoassisted and robotic-assisted laparoscopy and hysteroscopy. New York: Cambridge University Press; 2013.
- 22. Alabiso G, Alio L, Arena S, et al. How to manage bowel endometriosis: the ETIC approach. J Minim Invasive Gynecol 2015;22: 517-29.

1287

1288

1311

1302

1303

1304

1305

1321 1322 1323

1324 1325 1326

1331 1332

1333 1334

1335 1336 1337

1338 1339

1340 1341

1343 23. Pittaway DE, Fayez JA. The use of CA-125 1344 in the diagnosis and management of endome-1345 triosis. Fertil Steril 1986;46:790-5.

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

- 24. Rosa ESAC, Rosa ESJC, Ferriani RA. Serum CA-125 in the diagnosis of endometriosis. Int J Gynaecol Obstet 2007;96:206-7.
- 25. Exacoustos C, Malzoni M, Di Giovanni A, et al. Ultrasound mapping system for the surgical management of deep infiltrating endometriosis. Fertil Steril 2014;102:143-50.e2.
- **26.** Guerriero S, Condous G, van den Bosch T, et al. Systematic approach to sonographic evaluation of the pelvis in women with suspected endometriosis, including terms, definitions and measurements: a consensus opinion from the International Deep Endometriosis Analysis (IDEA) group. Ultrasound Obstet Gynecol 2016;48:318-32.
- 27. Hudelist G, English J, Thomas AE, Tinelli A, Singer CF, Keckstein J. Diagnostic accuracy of transvaginal ultrasound for non-invasive diagnosis of bowel endometriosis: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2011:37:257-63.
- 28. Van Der Wat J. The use of modified virtual colonoscopy to structure a staging and treatment model for rectogenital, multifocal and disseminated endometriosis. J Minim Invasive Gynecol 2015;22:S173.
- 29. Ferrero SCG, Roberti Maggiore UL, Venturini LP, Biscaldi E, Remorgida V. Bowel endometriosis: recent insights and unsolved problems. World J Gastrointest Surg 2011;3: 1371 Q19 31-8.
  - 30. Wu L, Wu Q, Liu L. Oral contraceptive pills for endometriosis after conservative surgery: a systematic review and meta-analysis. Gynecol Endocrinol 2013;29:883-90.
  - 31. Vercellini P, Pietropaolo G, De Giorgi O, Pasin R, Chiodini A, Crosignani PG. Treatment of symptomatic rectovaginal endometriosis with an estrogen-progestogen combination versus low-dose norethindrone acetate. Fertil Steril 2005;84:1375-87.
  - 32. Ferrero S, Camerini G, Ragni N, Venturini PL, Biscaldi E, Remorgida V. Norethisterone acetate in the treatment of colorectal endometriosis: a pilot study. Hum Reprod 2010:25:94-100.
  - 33. Fedele L, Bianchi S, Zanconato G, Portuese A, Raffaelli R. Use of a levonorgestrelreleasing intrauterine device in the treatment of rectovaginal endometriosis. Fertil Steril 2001;75: 485-8.
  - 34. Razzi S, Luisi S, Calonaci F, Altomare A, Bocchi C, Petraglia F. Efficacy of vaginal danazol treatment in women with recurrent deeply infiltrating endometriosis. Fertil Steril 2007;88: 789-94.
  - 35. Ferrero S, Camerini G, Seracchioli R, Ragni N, Venturini PL, Remorgida V. Letrozole combined with norethisterone acetate compared with norethisterone acetate alone in the treatment of pain symptoms caused by endometriosis. Hum Reprod 2009;24:3033-41.
  - 36. Fedele L, Bianchi S, Zanconato G, Tozzi L, Raffaelli R. Gonadotropin-releasing hormone

agonist treatment for endometriosis of the rectovaginal septum. Am J Obstet Gynecol 2000;183:1462-7.

- 37. Nezhat F, Nezhat C, Pennington E, Ambroze W Jr. Laparoscopic segmental resection for infiltrating endometriosis of the rectosigmoid colon: a preliminary report. Surg Laparosc Endosc 1992;2:212-6.
- 38. Nezhat C, Nezhat F, Ambroze W, Pennington E. Laparoscopic repair of small bowel and colon. A report of 26 cases. Surg Endosc 1993;7:88-9.
- 39. Nezhat C, Nezhat F, Pennington E, Nezhat CH, Ambroze W. Laparoscopic disk excision and primary repair of the anterior rectal wall for the treatment of full-thickness bowel endometriosis. Surg Endosc 1994;8:682-5.
- **40.** Nezhat C, Pennington E, Nezhat F, Silfen SL. Laparoscopically assisted anterior rectal wall resection and reanastomosis for deeply infiltrating endometriosis. Surg Laparosc Endosc 1991;1:106-8.
- 41. Nezhat C NF. Evaluation of safety of videolaseroscopic treatment of bowel endometriosis. Paper presented at: 44th annual meeting of the American Fertility Society; Oct. 8-13, 1988; Atlanta, GA.
- 42. Nezhat C, Nezhat F, Pennington E. Laparoscopic treatment of infiltrative rectosigmoid colon and rectovaginal septum endometriosis by the technique of videolaparoscopy and the CO2 laser. Br J Obstet Gynaecol 1992;99:
- 43. Nezhat C, Crowgey SR, Garrison CP. Surgical treatment of endometriosis via laser laparoscopy. Fertil Steril 1986;45:778-83.
- 44. Nezhat F, Nezhat C, Pennington E. Laparoscopic proctectomy for infiltrating endometriosis of the rectum. Fertil Steril 1992;57:1129-32.
- 45. Ruffo G, Scopelliti F, Scioscia M, Ceccaroni M, Mainardi P, Minelli L. Laparoscopic colorectal resection for deep infiltrating endometriosis: analysis of 436 cases. Surg Endosc 2010;24:63-7.
- 46. Darai E, Dubernard G, Coutant C, Frey C, Rouzier R, Ballester M. Randomized trial of laparoscopically assisted versus open colorectal resection for endometriosis: morbidity, symptoms, quality of life, and fertility. Ann Surg 2010;251:1018-23.
- 47. Daraï E, Dubernard G, Coutant C, Frey C, Rouzier R, Ballester M. Randomized trial of laparoscopically assisted versus open colorectal resection for endometriosis: morbidity, symptoms, quality of life, and fertility. Ann Surg 2010;251:1018-23.
- 48. Nezhat C, Hajhosseini B, King LP. Roboticassisted laparoscopic treatment of bowel, bladder, and ureteral endometriosis. JSLS 2011;15:387-92.
- 49. Nezhat C, Hajhosseini B, King LP. Laparoscopic management of bowel endometriosis: predictors of severe disease and recurrence. JSLS 2011;15:431-8.
- 50. Roman H, Milles M, Vassilieff M, et al. Longterm functional outcomes following colorectal

resection versus shaving for rectal endometriosis. Am J Obstet Gynecol 2016;215:762.e1-9.

- 51. Kent A, Shakir F, Rockall T, et al. Laparoscopic surgery for severe rectovaginal endometriosis compromising the bowel: a prospective cohort study. J Minim Invasive Gynecol 2016;23:526-34.
- 52. Kent A, Shakir F, Rockall T, et al. Laparoscopic surgery for severe rectovaginal endometriosis compromising the bowel: a prospective cohort study. J Minim Invasive Gynecol 2016;23:526-34.
- 53. Nezhat C, Nezhat C, Nezhat F, et al. Outcome after rectum or sigmoid resection: a review for gynecologists. J Minim Invasive Gynecol 2007;14:529-30.
- **54.** Mohr C, Nezhat FR, Nezhat Seidman DS, Nezhat CR. Fertility considerations in laparoscopic treatment of infiltrative bowel endometriosis. JSLS 2005;9:16-24.
- 55. De Cicco C, Corona R, Schonman R, Mailova K, Ussia A, Koninckx P. Bowel resection for deep endometriosis: a systematic review. BJOG 2011:118:285-91.
- 56. Roman H, Hennetier C, Darwish B, et al. Bowel occult microscopic endometriosis in resection margins in deep colorectal endome- Q20 triosis specimens has no impact on short-term postoperative outcomes. Fertil Steril 2016;105: 423-9.
- 57. Nezhat C, Nezhat FR. Safe laser endoscopic excision or vaporization of peritoneal endometriosis. Fertil Steril 1989;52:149-51.
- 58. Donnez J, Squifflet J. Complications, pregnancy and recurrence in a prospective series of 500 patients operated on by the shaving technique for deep rectovaginal endometriotic nodules. Hum Reprod 2010;25: 1949-58.
- 59. Nezhat C, Crowgey SR, Garrison CP. Surgical treatment of endometriosis via laser laparoscopy and videolaseroscopy. Contrib Gynecol Obstet 1987;16:303-12.
- 60. Donnez J, Jadoul P, Colette S, Luyckx M, Squifflet J, Donnez O. Deep rectovaginal endometriotic nodules: perioperative complications from a series of 3,298 patients operated on by the shaving technique. Gynecol Surg 2013;10:
- 61. Donnez J, Nisolle M, Gillerot S, Smets M, Bassil S, Casanas-Roux F. Rectovaginal septum Q21 adenomyotic nodules: a series of 500 cases. Br J Obstet Gynaecol 1997;104:1014-8.
- 62. Roman H, Moatassim-Drissa S, Marty N, et al. Rectal shaving for deep endometriosis infiltrating the rectum: a 5-year continuous retrospective series. Fertil Steril 2016;106: 1438-45.e2.
- 63. Jerby BL, Kessler H, Falcone T, Milsom JW. Laparoscopic management of colorectal endometriosis. Surg Endosc 1999;13:1125-8.
- 64. Coronado C, Franklin RR, Lotze EC, Bailey HR, Valdes CT. Surgical treatment of symptomatic colorectal endometriosis. Fertil Steril 1990;53:411-6.
- 65. Fanfani F, Fagotti A, Gagliardi ML, et al. Discoid or segmental rectosigmoid resection for

1399

1438 1439 1440

1437

1442 1443

1441

1444 1445 1446

1447 1448

1449 1450 1451

1452 1453

deep infiltrating endometriosis: a case-control study. Fertil Steril 2010;94:444-9.

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497 1498

1499

1500 1501

1502

1503

1504

1505

1506

1507 1508

1509

1510

- 66. Landi S, Pontrelli G, Surico D, et al. Laparoscopic disk resection for bowel endometriosis using a circular stapler and a new endoscopic method to control postoperative bleeding from the stapler line. J Am Coll Surg 2008;207:205-9.
- 67. Wills HJ, Reid GD, Cooper MJ, Tsaltas J, Morgan M, Woods RJ. Bowel resection for severe endometriosis: an Australian series of 177 cases. Aust N Z J Obstet Gynaecol 2009;49:
- 68. Remorgida V, Ragni N, Ferrero S, Anserini P, Torelli P, Fulcheri E. How complete is full thickness disc resection of bowel endometriotic lesions? A prospective surgical and histological study. Hum Reprod 2005;20: 2317-20.
- 69. Slack A, Child T, Lindsey I, et al. Urological and colorectal complications following surgery rectovaginal endometriosis. **BJOG** 2007;114:1278-82.
- 70. Afors K, Centini G, Fernandes R, et al. Segmental and discoid resection are preferential to bowel shaving for medium-term symptomatic relief in patients with bowel endometriosis. J Minim Invasive Gynecol 2016;23:1123-9.
- 71. Moawad NS, Guido R, Ramanathan R, Mansuria S, Lee T. Comparison of laparoscopic anterior discoid resection and laparoscopic low anterior resection of deep infiltrating rectosigmoid endometriosis. JSLS 2011;15:331-8. 72. Maclean NJ. Endometriosis of the large
- bowel. Can Med Assoc J 1936;34:253-8.
- 73. TS C. The distribution of adenomyomas containing uterine mucosa. American Medical Q22 Association Press; 1920.
  - 74. Ret Davalos ML, De Cicco C, D'Hoore A, De Decker B, Koninckx PR. Outcome after rectum or sigmoid resection: a review for gynecologists. J Minim Invasive Gynecol 2007;14:33-8.
  - 75. Ballester M, Chereau E, Dubernard G, Coutant C, Bazot M, Darai E. Urinary dysfunction after colorectal resection for endometriosis: results of a prospective randomized trial comparing laparoscopy to open surgery. Am J Obstet Gynecol 2011;204:303.e1-6.
  - **76.** Dubernard G, Rouzier R, Montefiore E, Bazot M, Darai E. Urinary complications after surgery for posterior deep

infiltrating endometriosis are related to the extent of dissection and to uterosacral ligaments resection. J Minim Invasive Gynecol 2008;15:

- **77.** Riiskjær M, Greisen S, Glavind-Kristensen M, Kesmodel US, Forman A, Seyer-Hansen M. Pelvic organ function before and after laparoscopic bowel resection for rectosigmoid endometriosis: a prospective, observational study. BJOG 2016;123:1360-7.
- 78. Tosti C, Pinzauti S, Santulli P, Chapron C, Petraglia F. Pathogenetic mechanisms of deep infiltrating endometriosis. Reprod Sci 2015;22: 1053-9.
- 79. Ceccaroni M, Clarizia R, Bruni F, et al. Nerve-sparing laparoscopic eradication of deep endometriosis with segmental rectal and parametrial resection: the Negrar method. A singlecenter, prospective, clinical trial. Surg Endosc 2012;26:2029-45.
- 80. Kavallaris A, Banz C, Chalvatzas N, et al. Laparoscopic nerve-sparing surgery of deep infiltrating endometriosis: description of the technique and patients' outcome. Arch Gynecol Obstet 2011;284:131-5.
- 81. Ranade RG, Damale UB. Radical surgery for cervical carcinoma: experience with "the Tokyo method". Indian J Cancer 1991;28:99-107.
- 82. Possover M, Quakernack J, Chiantera V. The LANN technique to reduce postoperative functional morbidity in laparoscopic radical pelvic surgery. J Am Coll Surg 2005;201:913-7.
- 83. Roman H, Abo C, Huet E, Tuech JJ. Deep shaving and transanal disc excision in large endometriosis of mid and lower rectum: the Rouen technique. Surg Endosc 2016;30:
- 84. Nezhat C, Nezhat F. Incidental appendectomy during videolaseroscopy. Am J Obstet Gynecol 1991;165:559-64.
- 85. Gustofson RL, Kim N, Liu S, Stratton P. Endometriosis and the appendix: a case series and comprehensive review of the literature. Fertil Steril 2006;86:298-303.
- 86. Berker B, Lashay N, Davarpanah R, Marziali M, Nezhat CH, Nezhat C. Laparoscopic appendectomy in patients with endometriosis. J Minim Invasive Gynecol 2005;12:206-9.
- 87. Alves A, Panis Y, Mathieu P, et al. Mortality and morbidity after surgery of mid and low rectal

cancer. Results of a French prospective multicentric study. Gastroenterol Clin Biol 2005;29: 509-14.

- 88. Camilleri-Brennan J, Steele RJ. Objective assessment of morbidity and quality of life after surgery for low rectal cancer. Colorectal Dis 2002:4:61-6.
- 89. Ribeiro PA, Rodrigues FC, Kehdi IP, et al. Laparoscopic resection of intestinal endometriosis: a 5-year experience. J Minim Invasive Gynecol 2006;13:442-6.
- 90. Roman H TJ, Slim K, Canis M. Functional outcomes of surgical management of deep endometriosis infiltrating the rectum (ENDORE). NCT01291576.
- 91. Ruffo G, Sartori A, Crippa S, et al. Laparoscopic rectal resection for severe endometriosis of the mid and low rectum: technique and operative results. Surg Endosc 2012;26: 1035-40.
- 92. Acien P, Nunez C, Quereda F, Velasco I, Valiente M, Vidal V. Is a bowel resection necessary for deep endometriosis with rectovaginal or colorectal involvement? Int J Womens Health 2013;5:449-55.
- 93. Abrão MS, Petraglia F, Falcone T, Keckstein J, Osuga Y, Chapron C. Deep endometriosis infiltrating the recto-sigmoid: critical factors to consider before management. Hum Reprod Update 2015;21:329-39.
- 94. Sampson J. Perforating hemorrhagic (chocolate) cysts of the ovary. Their importance and especially their relationship to pelvic adenoma of endometrial type ("adenomyoma" of the uterus, rectovaginal septum, sigmoid, etc). Arch Surg 1921;3:245-323.
- 95. Collins PG. Endometriosis as a cause of intestinal obstruction; a report of two cases. Postgrad Med J 1957;33:519-25.
- 96. Soto E, Catenacci M, Bedient C, Jelovsek JE, Falcone T. Assessment of longterm bowel symptoms after segmental resection of deeply infiltrating endometriosis: a matched cohort study. J Minim Invasive Gynecol 2016;23:753-9.
- 97. Miralpeix E, Nick AM, Meyer LA, et al. A call for new standard of care in perioperative gynecologic oncology practice: impact of enhanced recovery after surgery (ERAS) programs. Gynecol Oncol 2016;141:371-8.

1511

1512

1534

1535

1542

1547 1548 1549

1550 1551 1552

1553 1554

1555 1556 1557

1558 1559 1560

1561 1562 1563