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leucine-rich repeat containing G
protein—coupled receptor 5—positive
cells in the eutopic endometrium iIn
endometriosis and implications in
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Objective: To characterize leucine-rich repeat containing G protein-coupled receptor 5-positive (LGR5") cells from the endometrium
of women with endometriosis.

Design: Prospective experimental study.

Setting: University hospital/fertility clinic.

Patient(s): Twenty-seven women with endometriosis who underwent surgery and 12 healthy egg donors, together comprising 39
endometrial samples.

Intervention(s): Obtaining of uterine aspirates by using a Cornier Pipelle.

Main Outcomes Measure(s): Immunofluorescence in formalin-fixed paraffin-embedded tissue from mice and healthy and pathologic
human endometrium using antibodies against LGR5, E-cadherin, and cytokeratin, and epithelial and stromal LGR5™" cells isolated from
healthy and pathologic human eutopic endometrium by fluorescence-activated cell sorting and transcriptomic characterization by RNA
high sequencing.

Result(s): Immunofluorescence showed that LGR5™ cells colocalized with epithelial markers in the stroma of the endometrium only in
endometriotic patients. The results from RNA high sequencing of LGR5 " cells from epithelium and stroma did not show any statistically
significant differences between them. The LGR5" versus LGR5 ™ cells in pathologic endometrium showed 394 differentially expressed
genes. The LGR5" cells in deep-infiltrating endometriosis expressed inflammatory markers not present in the other types of the disease.
Conclusion(s): Our results revealed the presence of aberrantly located LGR5™ cells coexpressing epithelial markers in the stromal compart-
ment of women with endometriosis. These cells have a statistically significantly different expression profile in deep-infiltrating endometriosis
in comparison with other types of endometriosis, independent of the menstrual cycle phase. Further studies are needed to elucidate their role
and influence in reproductive outcomes. (Fertil Steril® 2017; Il :Ill-Hl. ©2017 by American Society for Reproductive Medicine.)
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characterized by the presence of endometrial tissue
outside the uterine cavity, affects 10% to 15% of
reproductive-age women and is a common cause of pelvic
pain and/or infertility (1). Several theories have been proposed
to explain its origin, but no consensus has been reached. For
many years, the most accepted theory was Sampson’s hypoth-
esis, in which retrograde menstruation is the cause of endome-
triosis (2). However, there are limitations to Sampson’s theory,
and other investigators have pointed to coelomic metaplasia
(3) or embryonic rests (4). These latter theories would explain
the most frequently observed lesions, such as endometrioma
(ovaries), pelvic lesions (pelvic cavity), and deep-infiltrating
endometriosis (DIE) (other areas such as the intestines and uri-
nary bladder); the presence of endometrial tissue in the myome-
trium is diagnosed as adenomyosis. However, none of these
theories account for the cases of distant lesions outside the
pelvis, such as in the brain or lungs. Thus, alternatively, more
recent studies have suggested that bone marrow or endometrial
stem cells may play a role in the origin of endometriosis (5-9).
The association between infertility and endometriosis and
adenomyosis (10) has been widely studied (11). It is known
that eutopic endometrium is altered in women with endome-
triosis (12), and that it diminishes endometrial receptivity and
embryo implantation (13), but the mechanistic link remains
unknown. There is a need to identify the molecules involved
in the pathophysiology of the disease and to determine their
impact on the eutopic endometrium and reproductive out-
comes. Additionally, understanding these mechanisms in
the eutopic endometrium may help to unravel the origin of
endometriosis. Endometrial biopsies, also called uterine aspi-
rates, may be a useful tool to assess these cytologic and mo-
lecular alterations and could contribute to the diagnosis of
certain endometrial disorders (14).
Leucine-rich repeat-containing G protein-coupled receptor
5 (LGR5), which has been described as a stem cell marker in the
small intestine and in hair follicles (15-17), also has been found
in endometrium (18). Recently, it was discovered that LGR5™
cells from healthy endometrium have a hematopoietic origin
(19). Approximately half the population of LGR5" cells
coexpress CD45 (leukocyte marker) and CD163, suggesting its
myeloid nature. It also is interesting that these cells appear to
remain constant throughout the menstrual cycle (19, 20).
Bidirectional communication between primary and meta-
static tumors has been demonstrated (21). Certain metastatic
cancers shed cells into the blood circulation; these cells selec-
tively migrate, engraft the original tumor, and contribute to the
progression of the disease. In addition, one study observed a sub-
stantial reduction in liver metastasis when original colon tumors
were depleted of LGR5™ cells (22). Further, selective destruction
of LGR5™ cells led to temporary tumor regression in colorectal
tumors, highlighting the important role that LGR5™ cells may
have in the progression of certain tumors (23). Finally, a previous
study (24) demonstrated in a rodent model of endometriosis that
cells from endometriosis lesions migrated specifically to eutopic
endometrium, modifying its normal gene expression profile.
These migrating cells were mostly located close to blood vessels
and aberrantly expressed the epithelial marker cytokeratin (CK)
in the stromal compartment. Subsequent gene expression

E ndometriosis, an estrogen-dependent benign disease

analysis revealed that these cells expressed markers related to
cell adhesion, stemness, and epithelial-mesenchymal transition
process (EMT) as well as LGR5.

Therefore, we hypothesized that LGR5 could be involved
in the pathophysiology of endometriosis. We determined
whether there is an aberrant pattern of LGR5 and epithelial
markers present in the uterine aspirates of women with
endometriosis as compared with healthy endometrium, and
we examined the nature and the possible role of these cells
in endometriosis by characterizing their gene expression
profile in different types of endometriosis.

MATERIALS AND METHODS
Sample Collection and Processing

A total of 39 uterine aspirates were collected between 2014
and 2016. Twenty-seven samples were obtained from women
with endometriosis in treatment for diagnosis or for benign
gynecologic disorders in collaboration with the Department
of Gynecology of Vall d’'Hebron University Hospital (Barce-
lona, Spain). Twelve additional specimens were obtained
from healthy women donating eggs at IVI Barcelona S.L.
All uterine biopsy samples were collected using a Cornier Pi-
pelle under an approved protocol, and after written informed
consent was obtained. The use of the uterine specimens was
approved by the ethics committee of Vall d’'Hebron Research
Institute [Number PR (AMI) 298/2013].

All the participating women were premenopausal. The
patients with endometriosis did not receive hormones for
6 months before surgery, and all the healthy women were
egg donors stimulated with follicle-stimulating hormone
(FSH). The biopsy samples were collected from the endometri-
osis patients at the time of laparoscopy, and from the donors at
the time of egg retrieval. The clinical characteristics of the
patients are detailed in Supplemental Table 1 (available online).

A small fraction of the uterine aspirates was washed with
phosphate-buffered saline solution (Gibco-Invitrogen) and
placed into 4% formaldehyde for fixation and paraffin
embedding. Formalin-fixed paraffin-embedded samples
were sectioned for hematoxylin and eosin staining to deter-
mine the stage of the menstrual cycle and for immunofluores-
cence experiments. The stage of the cycle was determined by
histologic examination by a pathologist according to the
criteria of Noyes et al. (25). The remaining samples were care-
fully rinsed of blood and mucus and sliced into 1-2-mm?>
fragments, and digestion was performed with 10 mg of colla-
genase type I (Sigma-Aldrich) in Dulbecco’s modified Eagle’s
medium (with glucose and 10% of fetal bovine serum) (Gibco-
Invitrogen). We incubated the samples overnight at 4°C
before proceeding with immunocytochemistry and fluores-
cence activated cell sorting (FACS) of the LGR5H~ cells.

The next day, epithelial and stromal cells were separated
based on their size by means of gravity sedimentation and
membrane filtration, as previously described elsewhere
(19, 26). Subsequently they were treated with standard
erythrocyte lysis solution.

In order to confirm the expression of the LGR5 in the
migrating cells of rodent model of endomtriosis, specimens
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were generously provided by Dr. Hugh Taylor from Yale Uni-
versity (New Haven, CT).

Immunofluorescence

We performed immunofluorescence in eight eutopic endo-
metrium samples to confirm the presence of LGR5 in mice
endometrial GFP™ cells. Moreover, we analyzed the coloc-
alization of LGR5 with the epithelial marker E-cadherin
(ECAD). Once the colocalization was confirmed, we trans-
ferred the results to humans. We studied LGR5 colocaliza-
tion with ECAD and CK in eutopic endometrium biopsy
samples from 12 healthy women and 20 patients with
endometriosis on 3-um tissue sections. The slides were
incubated at 55°C overnight and treated in a xylene and
ethanol circuit. Then they were treated with ammonium
chloride (NH,C]) for 15 minutes and 20 minutes with citrate
(pH 6.0) (Abgent) at 95°C in a water bath followed by block-
ing by using 5% normal goat serum (NGS) (Invitrogen) and
5% bovine serum albumin (Sigma-Aldrich) for 1 hour at
room temperature.

The primary antibodies used were monoclonal rabbit
anti-LGR5 antibody (Abgent) in a 1:30 dilution, monoclonal
rat anti-GFP antibody (B-Bridge) in a 1:50 dilution, mono-
clonal mouse anti-E-cadherin antibody (Santa-Cruz) in a
1:150 dilution, and monoclonal mouse anti-pan-cytokeratin
antibody (Santa-Cruz) in a 1:50 dilution. They were incubated
overnight at 4°C. The secondary antibodies used were goat
Alexa647 anti-rabbit (Invitrogen) and goat Alexa488 anti-
mouse (Invitrogen), all in 1:500 dilutions, which were incu-
bated for 45 minutes at room temperature. We used ProLong
Gold antifade reagent with 6-diamino-2-phenylindole (DAPI;
Invitrogen) to visualize the nuclear DNA. Immunoreaction
without primary antibodies and without antibodies were per-
formed as controls. Visualizations and pictures were obtained
with an OlympusBX61 microscope.

FACS of LGR5 ™/~ cells

Uterine aspirates (eutopic endometrium) from 5 healthy women
and 13 women with endometriosis were stained and sorted
using a BD FACS ARIA Iinstrument. After the collagenase treat-
ment, all samples were separated by gravity sedimentation and
then filtered using 50-um mesh to obtain epithelial and stromal
fractions. Samples were treated with erythrocyte lysis buffer
then were blocked with 5% bovine serum albumin (Sigma-Al-
drich) for 1 hour at room temperature. The primary antibody
was monoclonal rabbit anti-LGR5 antibody (1 uL per million
of cells; BioNova Scientific), and the secondary was goat
Alexa647 anti-rabbit (Invitrogen) in a 1:500 dilution. To discard
the dead cells, the samples were stained with the DAPI probe
(5 wg/mL; Invitrogen). The LGR5"~ cells were collected
separately in TRIzol (Invitrogen) and stored at —80°C. Thirty-
eight paired samples were obtained, which comprised LGR5"/
~ cells from each uterine aspirate. The percentage of LGR5™
cells was analyzed by FCS Express5.0. To confirm that LGR5™
cells had been specifically sorted, we subjected them to cytospin
with 5,000 cells on a slide, and we stained them with the same
antibody that was used for immunofluorescence.

Fertility and Sterility®

RNA Extraction

Total RNA from sorted cells was isolated in two steps. First,
the cells were lysed using a 1-mL syringe. After treatment
with chloroform, the aqueous phase was precipitated with
70% ethanol in a volume proportion 1:1. Second, the samples
were passed through columns (step 2 of the RNAeasy micro
kit; Qiagen). We then followed the protocol according to the
manufacturer’s suggested conditions. The quality of the
RNA was determined using a Pico Chip with the Agilent
2100 Bioanalyzer. All 36 samples used for RNA high
sequencing had RIN (RNA integrity number) >7.

RNA High Sequencing

Preliminary study. To prove the feasibility of the sample to be
sequenced, we performed a preliminary study using four
samples (two from patients with endometriosis and two
from healthy donors). After the separation of epithelium
and stroma and cell sorting (LGR5*/~ cells), we obtained 16
samples. The library was constructed using TruSeq Stranded
Total RNA LT with the Ribo-Zero Gold, Set A kit (llumina).
Due to the small concentration of RNA, the fragmentation
step was eliminated to prevent RNA degradation.

According to the standard protocols, purified amplicons
were pooled in equimolar and paired-end sequenced flow
cell 2x50nt on an I[llumina Hi-Seq2000 platform in the Geno-
mics Unit of the Centre of Genomic Regulation (Barcelona). A
total of eight paired-end (2x50) pairs of FASTQ files were
obtained. Basic quality controls were performed with FASTQC
(27), FastX-Toolkit (28), and PRINSEQ (29). Paired-end
(forward-reverse) sample merging and the remaining steps
of the bioinformatics analysis were performed with CLCBio
Genomics Workbench software, version 8.0.2 (Qiagen).
Alignment and mapping were against the current human
genome (30). Counts were normalized with the standard reads
per kilobase per million (RPKM) method (31).

Complete study. After testing the feasibility of the sample, a
total of 36 eutopic endometrium samples—5 healthy donor, 3
endometriomas, 4 DIE, 3 pelvic endometriosis, and 3
adenomyosis, each with their respective LGR5"/~ cells—
were sequenced as explained earlier. We studied different
comparisons (Table 1), and we performed a biological signif-
icance analysis for comparisons 2, 4, 7, 9, and 10. In compar-
isons 2 and 4, the biological significance analysis was
performed searching for gene set enrichment analysis against
the KEGG (32) and GO databases (33) with the GAGE (34) and
Pathview (35) bioconductor packages. The common differen-
tiated expressed genes (DEG) between comparisons 7, 9, and
10 were determined and their biological significance analysis
was conducted using Ingenuity Pathway Analysis (IPA)
(Ingenuity Systems). The ideal set size for IPA core analysis
from gene expression data is typically 200-3,000. Therefore,
in comparisons 7, 9, and 10 we analyzed a total of 3,000
codifying DEG with the increased log, fold change (FC) and
false discovery rate (FDR) <.01 in each comparison.
Subsequently, to minimize the effect of the differences
among stimulated and nonstimulated cycles, we subtracted
the DEG found to be significantly expressed throughout
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TABLE 1

Statistically significant differences between LGR5 ™/~ cells in healthy women and women with endometriosis.

Codifying DEG Significance
0 FDR<0.01
299 FDR<0.01°
0 FDR<0.01
306 FDR<0.01°
0 FDR<0.01
0 FDR<0.01
5374 FDR<0.001°
0 FDR<0.01
5753 FDR<0.001°
6852 FDR<0.001°

Note: DEG in different comparisons. DEG = differentiated expressed genes; FDR = false discovery rate; LGR5" = leucine-rich repeat containing G protein-coupled receptor 5-positive. LogFold

Comparison DEG
LGR5™" healthy vs. LGR5" endometriosis 0
LGR5™ healthy vs. LGR5™ endometriosis 502
LGR5™ healthy vs. LGR5™ healthy controls 0
LGR5" endometriosis vs. LGR5~ endometriosis 394
LGR5" endometrioma vs. LGR5™ pelvic 0
LGR5" endometrioma vs. LGR5" adenomyosis 0
LGR5™ DIE vs. LGR5" endometrioma 14023
LGR5" adenomyosis vs. LGR5™ pelvic 0
LGR5" DIE vs. LGR5™ pelvic 14567
LGR5" DIE vs. LGR5" adenomyosis 17200
change = £2.

@ Comparison with statistically significant difference (FDR< .01/FDR< .001).

Vallvé-Juanico. LGR5 in endometrium of endometriosis. Fertil Steril 2017.

menstrual phases and stimulated and natural cycles accord-
ing to previous reports in the literature (36, 37). Although
both studies were based on the same array platform
(Affymetrix Human Genome U133Plus2.0 Array), several
studies have shown that the platforms used in this study
(Hi-Sec and arrays) are comparable (38-45).

Statistical Analysis

Significance testing for DEG was implemented with EDGE
testing (46) with a statistical significance criteria of alpha
<.01, adjusting for multiple testing with the FDR method
(47). We considered genes statistically significant if their
expression was FDR<.01 with FC + 2.

RESULTS
Immunofluorescence

Previously we reported that GFP™ cells colocalize with CK in
the endometrium of endometriotic mice (24). We confirmed
the colocalization of these GFP* cells with the LGR5 marker.
In five of eight cases we identified colocalization with the
epithelial marker ECAD in this compartment (data not shown).

These findings translated to human endometrium: the
presence of LGR5 was observed in both epithelium and stroma
in 12 healthy and 20 diseased endometrial samples. It is inter-
esting that LGR5" cells colocalized aberrantly with CK and
ECAD in the stroma from 13 and 16 of the 20 endometriotic
patients, respectively, whereas there was no colocalization
in any of 12 healthy donors (Supplemental Table 2, available
online). An example of this colocalization is shown in
Figure 1A and 1B.

FACS of LGR5"/~ cells

After FACS, we obtained around 5% of LGR5™ cells of the to-
tal uterine aspirate. Although not statistically significant, we
found that the LGR5™ cell percentage in DIE trended higher
than in the other types of the disease. We also confirmed
that all the sorted LGR5™ cells were positive in the cytospin
(Supplemental Fig. 1, available online).

RNA high Sequencing of LGR5"/~ cells

Preliminary study results. No statistically significant differ-
ences were observed in the gene expression profile of
LGR5™ cells obtained from the epithelial versus the stromal
compartment (FC + 2 and FDR<.01). Therefore, we decided
not to separate the compartments in subsequent samples.

Complete study results. No statistically significant differ-
ences (FC 4+ 2 and FDR<.01) were observed after
comparing healthy versus endometriotic LGR5™ cells in
36 samples. We excluded from the study 6,348 DEG in total:
5,315 genes that are significantly expressed throughout the
menstrual cycle and 1,033 DEG between the natural and
stimulated cycles. Furthermore, we did not observe differ-
ences between the LGR5™/~ cells from the group of healthy
women (FC &+ 2 and FDR<.01). Nevertheless, we did find
statistically significant differences (FC + 2 and FDR<.01)
in comparison 2 (502 DEG) and comparison 4 (394 DEG)
(Table 1).

In the comparison 4, specific myeloid cell markers were
overexpressed, including CD33, CD300E, CD300LF, CD300LB,
and CD200R1. We also found overexpression of monocyte
and macrophage markers, such as CD11b (ITGAM), CD163,
CD86, CD209, CD14, CD180, CD68, (D84, CD1C, CDI1A,
CD45, CD53, CD300C, CD1B, CD300A, CD80, CD36, CD74,
and CD93. When analyzing the biological significance, we ob-
tained 16 up-regulated pathways (Fig. 2A). Some of them were
related to the immune system, such as chemokine signaling
pathways (hsa04062) which was the top enrichment score, fol-
lowed by Toll-like receptor signaling pathway (hsa04620), Fc
epsilon RI signaling pathway (hsa04664), phagosome
(hsa04145), natural killer cell-mediated cytotoxicity
(hsa04650), cell adhesion molecules (CAMs, hsa04514), and
antigen processing and presentation (hsa04612).

Furthermore, hematopoietic cell lineage (hsa04640) was
also present. As shown in Figure 2B and Supplemental
Figure 2 (available online), LGR5" cells overexpressed he-
matopoietic cell lineage markers. Among the myeloid lineage,
CFU-GM (colony forming unit granulocyte, monocyte) node
showed the majority of overexpressed markers represented.
All these findings strongly suggest that LGR5™ cells may be
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FIGURE 1
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(A) Colocalization of leucine-rich repeat containing G protein-coupled receptor (LGR5) with E-cadherin (ECAD) in human eutopic endometrium. (B)
Colocalization of LGR5 with cytokeratin (CK) in human eutopic endometrium. In the left panels, LGR5 is dyed in red; in the central panel, the
epithelial markers are dyed in green; in the right panel, both markers are merged. The first rows show the control group, where there is no
coexpression of the markers in the stroma. The bottom row represents the colocalization of both markers in each type of endometriosis (except
pelvic endometriosis); in B, we did not find colocalization in deep-infiltrating endometriosis. Cells coexpressing both markers are shown with
yellow arrows. Magnification is shown on the right for each row.

Vallvé-Juanico. LGR5 in endometrium of endometriosis. Fertil Steril 2017.

similar to monocytes or their derivatives. This fact is rein-
forced by the presence of the overexpressed markers CD45,
CD68, CD300C, CD14, and CD163 (Fig. 2B).

Finally, statistically significant differences (FC + 2 and
FDR<.001) between pelvic endometriosis, endometrioma,
and adenomyosis against DIE were observed (Table 1). After

A

GSEA LGR5+ Cells in Endometriosis
Upregulated pathways
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i . CD14
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Olfactory Transduction
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(A) Leucine-rich repeat containing G protein-coupled receptor 5—positive (LGR5™) cells from patients with endometriosis from enriched KEGG up-
regulated pathways. The LGR5" cells are related to immune system pathways as well as hematopoietic cell lineage (highlighted in yellow). (B)
Overexpressed markers in CFU-GM node. Putative model where LGR5" monocytes transform to their derivatives: macrophages and monocyte-
derived dendritic cells. Cytokines CX3CR1 and CDF2RA participate in monocyte differentiation.

Vallvé-Juanico. LGR5 in endometrium of endometriosis. Fertil Steril 2017.
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biological analysis of comparisons 7, 9, and 10 we found an
overexpression of inflammatory response, immune cell traf-
ficking, and hematologic system development and function
pathways in LGR5" cells from DIE compared with other
subtypes. Molecular and cellular functions such as activation
of leukocytes and myeloid cells or inflammatory response
were observed; also the genes CCL1, CCL11, DEFB4A,
DEFB103A, CRH, PPM1D and PRKCE were present in
LGR5™ cells that were overexpressed in DIE. All molecular
and cellular functions and the implicated genes are listed in
Supplemental Table 3 (available online).

DISCUSSION

Our previous study (24) showed an abnormal epithelial
phenotype in the stromal compartment of the eutopic endo-
metrium of mice with induced endometriosis. In the present
study we assessed this abnormal epithelial cell type that ex-
presses the stem cell marker LGR5. Further, we postulated
that this marker could have a role in the disease. For that
reason we studied LGR5™ cells in the human eutopic endome-
trium of endometriotic women. We have demonstrated that
70% and 80% of the patients with endometriosis presented
an abnormal colocalization of LGR5 with CK and ECAD,
respectively, in the stromal compartment of the eutopic
endometrium. Strikingly, this coexpression was not found
in healthy women, showing that LGR5™ cells seem to behave
differently in women with endometriosis. To our knowledge,
this is the first time that this process has been reported in the
eutopic endometrium of endometriotic women. In our
opinion, this characteristic phenotype could potentially be
used as a diagnostic maker of endometriosis.

Moreover, previous studies reported the presence of 1% to
200 of LGR5™ cells in healthy endometrium and we observed
2% to 7% of LGR5" cells in the eutopic endometrium of women
with endometriosis. It is interesting that, in accordance with
other studies, our results showed no differences between the
percentage of LGR5" cells present in epithelium and stroma
in gene expression after RNA high sequencing analysis (19).
Although LGR5 has been well described in some tissues as a
stemness marker (48), recently it was demonstrated that it
does not seem to play this role in the human endometrium (19).

The endometrium is a highly dynamic tissue that
changes through the menstrual cycle. In our study, endome-
trial samples were obtained randomly throughout the men-
strual cycle. For this reason, to normalize and compare the
results, we excluded the genes that significantly changed
along the menstrual cycle and in stimulated cycles. This
has the advantage that our results can be interpreted inde-
pendently of the phase of the menstrual cycle, but it is also
limiting in that some relevant genes involved in pathways
that change through the menstrual cycle can be inadver-
tently excluded.

We are aware that we obtained the differentiated expressed
genes through the menstrual cycle and under FSH stimulation
from two arrays studies. For this reason, we used the IPA soft-
ware, where we only take into account the DEG that codify for
proteins. Several studies have been done using available data
sets from different platforms (49-55), and it has been

demonstrated in other studies that DEG from arrays and RNA
high sequencing were similar (38-45).

The gene expression profile of LGR5' human endometrial
cells in women with endometriosis showed that members of
the Wnt pathway were down-regulated, in contrast to the
migrating cells of the model where Wnt7a was overexpressed.
These results also support the evidence that LGR5" cells may
not behave as stem cells in human eutopic endometrium, as
previous works have demonstrated (19).

We also observed overexpression of certain hematopoiet-
ic markers in LGR5" cells such as CD33, CD300E, CD300LF,
CD300LB, and CD200R 1, supporting the fact that LGR5™ cells
from the human endometrium of women with endometriosis
seem to have myeloid lineage, as has been previously demon-
strated to occur in healthy endometrium (19). In our work, the
majority of overexpressed markers such as CD45, CD68,
CD300C, CD14, and CD163 belong to the colony forming
unit-macrophages/dendritic cells (CFU-M/DC). These find-
ings indicate that LGR5 ™" cells of endometriotic eutopic endo-
metrium are monocytes and their derivatives. It is known that
monocytes and macrophages are also directly related to
innate immune response, so it seems plausible that LGR5"
cells are monocytes capable of transdifferentiating into mac-
rophages and dendritic cells, which explains the activation of
the mononuclear phagocyte and immune-regulatory effector
(M-PIRE) system (56) (see Fig. 2B).

Other genes related to this cell lineage are overexpressed in
LGR5" cells. For instance, CX3CR1 is a chemokine involved in
the adhesion and migration of leukocytes, and CSF2RA is a
cytokine that controls the production, differentiation, and
function of granulocytes and macrophages. Several dendritic
cell markers such as CD1C, CD1E, CD83, CD207, and HLA-DR.

Previous works in a mice endometriosis model (24) sug-
gested that a selective migration of cells to the eutopic endome-
trium could be regulated by the EMT process, as they expressed
aberrant epithelial markers in the stroma. Our findings suggest
that EMT may explain the fact that LGR5" cells display a
monocyte gene expression profile as well as cytokeratin in
the stroma of the eutopic endometrium. This is also reinforced
by the overexpression in LGR5" cells of MMP12, which is a
matrix metalloproteinase involved in the degradation of the
extracellular matrix and involved in the EMT process (57).

A recent published article (19) demonstrated the presence
in the endometrium of CD45% and CD45~ LGR5 " cells, and it
is interesting that there were no statistically significant gene
expression profile differences among these groups. That study
also discussed the existence of two different origins of LGR5™
cells: LGR5" cells from bone marrow and LGR5" eutopic
endometrium resident cells. That is, there appears to be a pop-
ulation of LGR5" macrophage-like cells derived from bone
marrow that are CD45", and another perivascular population
of LGR5" macrophage-like cells that are CD45 . In our study,
we mostly observed overexpression of the myeloid markers in
our LGR5" population. Taking into account that a significant
rate of LGR5™ coexpress CD45™, we tend to conclude that the
LGR5" cells come from the bone marrow. However, we
cannot fully exclude the hypothesis that LGR5" may also
come from a transdifferentiation of stromal fibroblasts into
an epithelial phenotype by an EMT process, which could

6
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potentially lead to the migration of these cells to produce
endometrial lesions outside of the uterus.

Macrophages are also involved in tissue repair and remod-
eling (58-60). In some tumors, macrophages produce factors
that foster tumor progression through the production of
soluble mediators that support the proliferation, angiogenesis,
survival, and invasion of malignant cells (61). It is known that
DIE usually represents an aggressive type of disease with
increased invasion, proliferation, and angiogenesis in
comparison with the other types of endometriosis (1). It is
interesting that when we compared LGR5™ cells from different
types of endometriosis, we found seven overexpressed genes
in DIE: DEFB103A, DEFB4B, CCL1, CCL11, CRH, PPM1D, and
PRKCE. All these genes are related to inflammatory processes
and may have an impact in reproductive outcomes (Fig. 3).

The innate defenses of the human endometrium play a
critical role in the maintenance of an environment hospitable
to fertilization, fetal implantation, and successful pregnancy.
Circulating monocytes migrate into tissues where they differ-
entiate into macrophages, which plays an important role in
the initiation, maintenance, and resolution of inflammatory
responses. These functions are mediated through the produc-
tion of innate effectors such as proinflammatory interleukin-
1(62). Interleukin-1 activates uterine epithelial cells to induce
DEFB4B, an innate defensin. Chemokine (C-C motif) ligand 1
(CCL1) is a chemokine released by monocytes and macro-
phages that acts as a chemoattractant for neutrophils and
monocytes into different tissues and promotes the expression
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of integrin-8, which is involved in embryo-adhesion
processes (63). Therefore, it seems plausible that LGR5™ cells
in DIE could be responsible for recruiting more immune cells
in the endometrium by overexpressing CCL1 and potentially
affecting embryo implantation.

On the other hand, CCL11, is a chemokine initially
identified as a specific chemoattractant protein for eosinophils.
However, recent studies have indicated that it has a role in
mediating the activity of myeloid cells during development
and pathological states (64) and that it may have a function
in the endometrium other than as an eosinophil chemoattrac-
tant (65). Further studies have shown that the concentration of
CCL11 is elevated in the peritoneal fluid of women with severe
endometriosis (64, 66) and that CCL11 has angiogenic activity
(66), in directly mediating angiogenic responses (67), both
processes present in DIE. Additionally, Hornung et al. (64)
explained that CCL11 interacts with other cytokines and
immune cells to contribute to an inflammatory reproductive
tract environment, leading to endometrial or blastocyst
dysfunction and potentially impairing implantation.

Corticotropin-releasing hormone (CRH) is found in both
epithelial and stromal endometrial compartments (68), although
it is mainly produced by epithelial cells (69). It is secreted at
inflammatory sites and serves as an autocrine and paracrine
modulator (70), with proinflammatory properties that influence
both innate and acquired immune responses (71). These proper-
ties have been reported to be involved in endometriosis (72).
Moreover, CRH has been found to participate in an immune-
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processes, which have an impact on reproductive outcomes.
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regulatory manner in ovulation, luteolysis, decidualization,
embryo implantation, and maintenance of human pregnancy
(70-74). An up-regulation of CRH has been observed in
abortions (70, 75). Thus, it seems plausible that CRH may have
a negative reproductive effect on endometriotic endometrium.

Protein phosphatase 1D magnesium-dependent, delta iso-
form (PPM1D), controls a number of critical cellular functions
such as proliferation, cell cycle arrest, and programmed cell
death. It also is implicated in the differentiation and regulation
of the activity of hematopoietic stem cells (76) and appears to be
overexpressed in ovarian clear cell carcinoma (77), one of the
ovarian cancers often associated with endometriosis. Although
the evidence is not conclusive, these initial findings may help us
to understand the link between these two pathological entities.

Finally, protein kinase C epsilon (PRKCE) plays a major
role as a critical mediator of several signaling cascades in
activated macrophages (78) and is involved in monocyte-
derived dendritic cells differentiation (79). These data support
our proposed theory that LGR5™ cells are monocytes and their
derivatives (Fig. 2B), and they are involved in the innate
immune response. It is interesting that PRKCE seems to be
overexpressed exclusively in monocytes (80).

Although our results are promising, we are aware that the
study has several limitations. First, the number of samples we
assessed was not very large, so we have been restrictive in our
statistical analyses. Additionally, the egg donors did not
undergo a laparoscopy before the biopsy. Previous reports
have observed endometriosis in 4% of asymptomatic women
undergoing laparoscopic tubal ligation (81). Therefore, to
minimize the possible misdiagnosis of endometriosis we care-
fully selected fertility-proven donors without dysmenorrhea
or cysts in the ovaries.

Taken together, our results show for the first time aberrant
LGR5" cells coexpressing epithelial markers in the stromal
compartment of women with endometriosis that have a signif-
icantly different expression profile in DIE. All these findings
suggest eutopic endometrium may have different gene
signatures that depend on the type or aggressiveness of the
disease, which has implications for reproductive outcomes.
Further research is required to elucidate these issues.
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Hematopoietic cell lineage (hsa04640). Overexpressed differentiated expressed genes (DEG) in the hematopoietic cell lineage. The overexpressed
genes are shown in red and the down-regulated in green. Every box contains the information for the 14 studied patients with endometriosis.
Overexpressed (red encircled) markers match with monocyte/macrophages markers (CD11b (ITGAM), CD14, CD33, and CD64).
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