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BACKGROUND: Estrogens are known to orchestrate reproductive events and to regulate the immune system during infections and fol-
lowing tissue damage. Recent findings suggest that, in the absence of any danger signal, estrogens trigger the physiological expansion and
functional specialization of macrophages, which are immune cells that populate the female reproductive tract (FRT) and are increasingly
being recognized to participate in tissue homeostasis beyond their immune activity against infections. Although estrogens are the only
female gonadal hormones that directly target macrophages, a comprehensive view of this endocrine-immune communication and its
involvement in the FRT is still missing.

OBJECTIVE AND RATIONALE: Recent accomplishments encourage a revision of the literature on the ability of macrophages to
respond to estrogens and induce tissue-specific functions required for reproductive events, with the aim to envision macrophages as key
players in FRT homeostasis and mediators of the regenerative and trophic actions of estrogens.
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SEARCH METHODS: We conducted a systematic search using PubMed and Ovid for human, animal (rodents) and cellular studies pub-
lished until 2018 on estrogen action in macrophages and the activity of these cells in the FRT.

OUTCOMES: Our search identified the remarkable ability of macrophages to activate biochemical processes in response to estrogens in
cell culture experiments. The distribution at specific locations, interaction with selected cells and acquisition of distinct phenotypes of
macrophages in the FRT, as well as the cyclic renewal of these properties at each ovarian cycle, demonstrate the involvement of these cells
in the homeostasis of reproductive events. Moreover, current evidence suggests an association between estrogen–macrophage signaling
and the generation of a tolerant and regenerative environment in the FRT, although a causative link is still missing.

WIDER IMPLICATIONS: Dysregulation of the functions and estrogen responsiveness of FRT macrophages may be involved in infertility
and estrogen- and macrophage-dependent gynecological diseases, such as ovarian cancer and endometriosis. Thus, more research is
needed on the physiology and pharmacological control of this endocrine-immune interplay.
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Introduction
The fluctuations in estrogen levels that occur during the menstrual
cycle in women regulate innate defensive mechanisms against patho-
gen invasion and modify the susceptibility to inflammatory diseases,
such as atherosclerosis, ischemia or autoimmune pathologies; these
immune mechanisms have been proposed to explain, at least in part,
the different immune responses in females as compared to males
(Jørgensen, 2015). Such immunomodulatory activity has been
ascribed, to some degree, to the direct actions of estrogens on
macrophages, while the sex steroid hormones androgen and proges-
terone show either little or no effect (Kovats, 2015).

Macrophages are important players in innate immunity and their
deranged activation has effects in human inflammatory pathologies.
Beyond immunity, recent investigations have demonstrated novel
functions for macrophages, which are dictated by a vast array of
physiological cues and in response to specific regulatory interactions
that macrophages establish with specific cell types and matrix compo-
nents within tissues (Gordon and Plüddemann, 2017). Indeed, macro-
phages were shown to act in diverse organs of the female
reproductive tract (FRT) by non-immune processes and recently
shown to undergo a specific phenotypic adaptation in response to
estrogens and estrogen-regulated mediators that promote immune
tolerance and tissue remodeling (Pollard et al., 1998; Pepe et al.,
2017a). These novel data encourage a revision of the molecular and
biological details of the macrophage response to estrogens and the
evidence on the distribution and activity of these cells in the FRT,
with insight into the relevance of this endocrine-immune interplay in
FRT homeostasis and diseases.

Macrophage biology

Origins and renewal
Macrophages in adult tissues may have a dual origin. During fetal life,
embryonic progenitors migrate into developing organs to constitute
the resident population of macrophages that can self-replenish
throughout life. Tissue macrophages also derive from hematopoiesis,
as blood monocytes may infiltrate into tissues and differentiate into
mature cells (Schulz et al., 2012; Sieweke and Allen, 2013; Yona
et al., 2013). Self-renewal of tissue resident macrophages is regulated

by the lineage specific growth factor, macrophage-colony stimulating
factor (CSF1), as well as by immune and endocrine signals, such as
interleukin 4 (IL4), IL33 and estrogens, in a tissue-specific manner
(Tagliani et al., 2011; Hashimoto et al., 2013; Jenkins et al., 2013;
Jackson-Jones et al., 2016; Pepe et al., 2017a, b). Multiple physio-
logical signals, including CSF1 and the chemokines monocyte chemo-
attractant protein 1 (MCP1/CCL2) and macrophage inhibitory
protein 1α (MIP1α/CCL3), are clearly involved in the recruitment of
monocytes (Robertson et al., 1996; Wood et al., 1997; Long et al.,
1998; Pollard et al., 1987, 1998; Klotz et al., 2002; Moldenhauer
et al., 2010; Wheeler et al., 2018). The population of macrophages in
the FRT is maintained by both elf-renewal and monocyte recruit-
ment, as also reported for other organs such as spleen and kidney.
Expansion and recruitment of FRT macrophages occur under the
influence of chemoattractive and proliferative signals that are released
by FRT cells in response to endocrine and physiological stimuli,
including estrogens. Thus, beyond their direct activity, estrogens
indirectly regulate macrophage number by increasing the expression
of cytokines and chemokines in epithelial cells of the uterus and ovi-
ducts. Indeed, ablation of the genes coding for these mediators trig-
gers defective macrophage and reproductive functions in animal
models (Pollard et al., 1987; Schulz et al., 2012; Lavin et al., 2014).

Physiologic functions of macrophages
We here summarize the main physiological activities that are rou-
tinely carried out by macrophages located in various tissues, while
more specialized functions related to estrogen signaling and the FRT
are discussed later.

Inflammation, immune activation and tissue homeostasis
In response to bacterial or viral infections macrophages acquire a
classical activation phenotype, named M1 by analogy with T-helper
nomenclature, characterized by the production of inflammatory med-
iators such as cytokines, reactive oxygen species and arachidonic acid
metabolites, which sustain inflammation and kill invading microbes. In
contrast, stimuli such as IL4 and IL13, together with tissue resident
signals, lead macrophages to acquire an ‘alternative’ or M2 activation
state, which is involved in tissue remodeling (Wynn and Vannella,
2016; Minutti et al., 2017). Though M1–M2 polarization has been
shown to occur in vivo, this classification should only be considered a
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schematic representation of a spectrum of intermediary phenotypes
induced by the combinatorial effects of stimuli and other cell types
present in the microenvironment (Xue et al., 2014).

Macrophage phenotypic adaptations are mediated by specific
transcription factors, such as nuclear factor-kappa enhancer of acti-
vated B cells that is crucial for the expression of genes linked to
the M1 inflammatory response, and CCAAT-enhancer-binding
protein-b (C/EBPb), Kruppel-like Factor 4 (KLF4) and the transcrip-
tional repressor KLF11 involved in M2 gene expression (Bouhlel
et al., 2007; Takeda et al., 2010; Lawrence and Natoli, 2011; Liao
et al., 2011; Pello et al., 2012). Interestingly, some of these tran-
scription factors are also highly expressed in the FRT and involved
in reproductive tissue pathologies (Navarro et al., 2012; Daftary
et al., 2013). Distinct phenotypes also correspond to specific adap-
tations of macrophage energy metabolism, so that resting and M2
macrophages produce energy by the potentiation of oxidative phos-
phorylation and tricarboxylic acid cycle, while M1 activation is asso-
ciated with higher rates of glycolysis (Vats et al., 2006; Palsson-
McDermott and O’Neill, 2013).

The phenotypic adaptation of macrophages is crucial for communi-
cating to the surrounding cells and the extracellular matrix (ECM;
Wynn and Vannella, 2016). Classically-activated macrophages sustain
matrix destruction through the secretion of proteases, such as matrix
metalloproteinases (MMPs) and cathepsin K, and the increased
expression of receptors for matrix proteins, such as Mac1 for fibrino-
gen (Adhyatmika et al., 2015). On the other hand, alternatively acti-
vated cells produce anti-inflammatory and pro-fibrotic mediators,
such as transforming growth factor-β 1, C Chemokine Ligand 18 and
resistin-like molecule α (RELMα), which promote proliferation of sur-
rounding cells, and matrix synthesis and deposition (Liu et al., 2004;
Knipper et al., 2015). Chronically-activated inflammatory macro-
phages may lead to tissue degeneration, while the uncontrolled acti-
vation of the M2 phenotype is a pro-fibrotic process that drives
tissue fibrosis and non-healing wounds (Wynn and Vannella, 2016;
Minutti et al., 2017). The function of macrophages in the FRT is
clearly and demonstrably controlled by macrophage-specific regula-
tors that are locally synthesized by cells, such as uterine epithelia,
also under the influence of estrogens (Moldenhauer et al., 2010).

Phagocytosis
Macrophages recognize, engulf and degrade microorganisms or ‘self’
cells, or parts of them, through the engagement of specific phagocytic
receptors. The phagocytosis of a pathogen is activated by the ability
of pattern-recognition receptors (PRRs) to bind to specific molecules
of the pathogen cell wall, such as mannans in yeasts and lipopolysac-
charide (LPS) in bacteria (Weiss and Schaible, 2015). On the other
hand, phagocytosis of self-cells is a natural homeostatic process in
cell turnover induced by ‘eat-me’ signals, such as phospholipid phos-
phatidylserine, and inhibited by ‘don’t-eat-me’ signals, such as sialic
acid, which are recognized by specific scavenger receptors abundantly
expressed by macrophages (Arandjelovic and Ravichandran, 2015;
Gordon and Plüddemann, 2018). Importantly, PRR activation is
coupled with the production of pro-inflammatory molecules, while
engulfment of apoptotic cells transmits an immunosuppressive signal
in macrophages to curtail inflammation and promote tissue
remodeling.

Estrogen signaling and
macrophage responses
Gonadal steroidogenesis is mediated by a cooperative interaction
between thecal and granulosa cells, known as the ‘two-cell’ model,
which is tightly regulated in time and space by neuroendocrine signals
(Hillier et al., 1994). Under the influence of LH, steroidogenesis begins
in thecal cells, which take up large amounts of cholesterol via the low
density lipoprotein (LDL) receptor (LDLR) and convert it into shorter
intermediates. These lipophilic molecules diffuse through the basal
lamina and infiltrate granulosa cells, which instead receive no blood
supply and have minimal levels of LDLR and cholesterol-modifying
enzymes, except for the aromatase enzyme, the last enzyme in estro-
gens biosynthesis that is expressed under the control of FSH. This
neuroendocrine system generates the typical temporal profile of
blood estrogen levels, which gradually increase during the early and
mid-proliferative phases until sharply peaking and immediately declin-
ing at the end of the proliferative phase before ovulation, which is trig-
gered by the LH surge at mid-cycle; estrogen synthesis is then
sustained by luteinizing cells of the corpus luteum in the secretory
phase and decreases during luteolysis. The most abundant and active
estrogen is 17β-estradiol (E2). Macrophages are physically confined to
the thecal cell layer in the growing follicle, while they gain contact with
luteinizing cells after ovulation, suggesting a specific role in cholesterol
handling and steroidogenesis, as further described below.

The molecular mechanism of estrogen
action
Estrogen receptors
Estrogen action is mediated by two intracellular estrogen receptors
(ERs), namely ESR1 (ERα) and ESR2 (ERβ), and by the G protein-
coupled estrogen receptor 1 (GPER1), a plasma membrane protein
which binds E2 and ER agonists/antagonists with a reduced affinity
(10–100-fold and 1000-fold lower, respectively) than that of intra-
cellular ERs (Thomas et al., 2005; Petrie et al., 2013). Human and
mouse macrophages express the Esr1 and Gper1 genes, while
expression of Esr2 and progesterone receptor (PR) in macrophages
is controversial (Lambert et al., 2004; Vegeto et al., 2004; Rettew
et al., 2010; Ribas et al., 2011; Villa et al., 2016). To clarify this
issue, we searched in public repository sites for transcriptomics
datasets obtained by RNA sequencing of mouse and human resting
macrophages and report the data for steroid receptors in Table I.
ERβ and PR are not detectable and the androgen receptor is
expressed at low levels, while ERα and GPER1 mRNAs are present
at different absolute values among datasets, probably due to the
sensitivity of the methodology used. However, their relative abun-
dance remains unchanged when considered in relation to the
house-keeping gene, ribosomal protein lateral stalk subunit P0
(Rplp0), or the Nr3C1 gene coding for the glucocorticoid receptor,
whose expression and activity are widely described in macrophages
(Martinez et al., 2006; Pepe et al., 2017a). Thus, in line with the
general consensus, this analysis supports the conclusion that estro-
gen action in macrophages is mainly mediated by ERα and GPER1
under physiological conditions, and that these cells are not able to
respond to progesterone, at least through a receptor-mediated
mechanism under physiological conditions.

3Estrogens and macrophages in female reproductive tissues
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ER expression may be regulated by genetic or epigenetic mechan-
isms induced by estrogen itself or by pathological conditions such as
inflammation, obesity and high fat diet in the case of macrophage ERα
(Ribas et al., 2011; Villa et al., 2015) or endometriosis for uterine
GPER1 and ERβ (Adams et al., 2007; Nasu et al., 2011; Ribas et al.,
2011; Heublein et al., 2013; Renthal et al., 2013; Han et al., 2015;
Villa et al., 2015). Despite being the most abundant sex steroid
receptor in macrophages, ERα levels are lower than in breast epithe-
lial cells, possibly due to a cell-specific usage of diverse promoter
regions within the Esr1 gene (Murphy et al., 2009). Thus, the unique
expression of ERα among sex steroid receptors in macrophages and
its liability to regulation suggest a physiologic role for this receptor in
the endocrine regulation of macrophage responses.

Regulation of receptor activity
As summarized in Figure 1, ERα is a transcription factor that is acti-
vated by estrogens to regulate target gene transcription by directly
binding to target gene promoters and recruiting transcriptional core-
gulators, or to interfere with the activity of other transcription fac-
tors. Estrogen-activated ERα and GPER1 also regulate cytoplasmic
effectors that modulate intracellular lipids, Ca2+ or cAMP levels
(Smith and O’Malley, 2004; Revankar et al., 2005; Deroo and
Korach, 2006; Levin, 2015). While target gene expression changes
within hours, non-genomic responses occur within minutes after the
estrogen surge. The response to estrogens varies in different tissues
as a result of cell-specific differences in the expression levels and
activity of hormone receptors and their coregulators. Hormonal
responses need also to be considered in a dynamic view, since estro-
gen levels progressively increase during the proliferative phase of the
ovarian cycle and induce later responses that are triggered, as in a
cascade model, by the initial estrogen-responsive targets (Della Torre
et al., 2011). In macrophages, estrogens were shown to regulate
gene expression through ERα and to induce non-genomic responses
mediated by both ERα and GPER1 (Frazier-Jessen and Kovacs, 1995;
Guo et al., 2002; Ghisletti et al., 2005; Calippe et al., 2008; Suzuki
et al., 2008; Hsieh et al., 2009; Murphy et al., 2010; Rettew et al.,
2010; Liu et al., 2013; Cote et al., 2015; Qian et al., 2015; Pepe et al.,
2017a). The dose and time-dependent mechanisms of action are

particularly relevant for peritoneal organs, where estrogen levels are
higher than in peripheral tissues (Loumaye et al., 1985; Manolopoulos
et al., 2001).

ER activity can be switched on or off by other endogenous mole-
cules. Receptor activation may be triggered by intracellular kinases
that are activated by diverse signals, including inflammatory cytokines,
and induce modifications in the ERα conformation resulting in
receptor-mediated genomic responses (Stellato et al., 2016; Stender
et al., 2017). Moreover, progesterone is known to oppose estrogen
actions in the uterus and vagina through the differentiation from pro-
liferative to secretory endometrial cells, production of less potent
estrogens and formation of vaginal mucus that hinders sperm survival
(Patel et al., 2015). The opposed activity is less defined in corpus
luteum as both progesterone and estrogen participate in luteal func-
tion and regression, while it does not seem to occur in macrophages,
as these cells do not express PRs (see Table I).

Constitutive and macrophage-specific ablation of ER
ER knock-out models showed that ERα is responsible for the effects
of estrogens in FRT physiology, with ERβ being important in ovulation
and GPER1 dispensable for fertility and reproduction (Dupont et al.,
2000; Hamilton et al., 2014; Hewitt et al., 2016). Transgenic mice
also confirmed the primary role of ERα in macrophage responses to
estrogens in various tissues, including brain, skin, lung and periton-
eum, although GPER1 may also be involved (Garidou et al., 2004;
Lambert et al., 2004; Vegeto et al., 2003, 2010; Campbell et al.,
2014; Wei et al., 2016; Pepe et al., 2017a, b). Animal models carrying
myeloid-specific ablation of ERα unraveled its contribution in main-
taining key macrophage functions, such as oxidative metabolism,
phagocytosis, cholesterol uptake and phenotypic activation (Calippe
et al., 2010; Ribas et al., 2011; Campbell et al., 2014). However, indi-
cations on the reproductive phenotype are only available for the
myeloid-specific ERα deficiency (MACER) mice, which were reported
to be fertile but also to develop liver, metabolic and adipose abnor-
malities reminiscent of dysmetabolic traits observed in women with
polycystic ovary syndrome (PCOS), who also develop subfertility and
menstrual irregularities (Teede et al., 2010; Ribas et al., 2011).
Interestingly, when exposed to insults such as caloric restriction,

.............................................................................................................................................

.............................................................................................................................................................................................

Table I Expression levels of steroid receptor RNA transcripts in macrophage, as reported in three datasets.

Macrophage source mRNA content

ERα (ESR1) ERβ (ESR2) GPER (GPER1) PR (PGR) AR GR (NR3C1) RPLP0

Peritoneal macrophagesa 1.4 nd 0.08 nd nd 30 1290

Peritoneal macrophagesb 151 nd nd nd 34 2821 52 333

Monocyte-derived macrophagesc 110 nd 20 nd 45 1180 12 000

Gene names are reported in brackets.
aBioProject ID PRJNA376257, reported in Pepe et al. (2017a). Data refer to murine peritoneal macrophages from adult female mice and are expressed as reads per kilobase of
transcript per million mapped reads.
bGEO dataset ID GSE107174. Data refer to murine peritoneal macrophages and are expressed as reads per kilobase of transcript per million mapped reads. Mouse sex is not
specified.
cGEO dataset ID GSE5099, reported in Martinez et al. (2006). Data refer to in vitro differentiated monocyte-derived macrophages from men and women healthy donors and are
expressed as arbitrary units at net of background level.
nd, not detected; ER, estrogen receptor; GPER, G protein-coupled estrogen receptor 1; PR, progesterone receptor; AR, androgen receptor; GR, glucocorticoid receptor; RPLP0,
ribosomal protein lateral stalk subunit P0 (house-keeping gene).
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metabolic imbalance or infections, different transgenic female mice
displayed a subfertility phenotype, described by anestrous, length-
ened ovarian cycles or reduced numbers of post-implantation
embryos, while maintaining a fertile phenotype under unstimulated
conditions (Martinez de la Torre et al., 2007; Della Torre et al.,
2016). Thus, subtle alterations in reproductive processes should be
addressed to define the relevance of estrogen action in macrophages
and precursor cells within the FRT, also considering that

compensatory mechanisms, such as modified expression or epigen-
etic alterations, may substitute for the deletion of a transcription fac-
tor involved in phenotype specialization, such as ERα.

Macrophage responses to estrogen
Our understanding of the functional interplay between estrogens and
macrophages grew in parallel with the acquisition of knowledge on

Figure 1 Molecular mechanisms of estrogen action and macrophage responses. Estrogens are the only female sexual hormones that directly com-
municate with macrophages, since these cells express estrogen receptor (ER)α and G protein-coupled estrogen receptor 1 (GPER1) but do not
express progesterone, LH or FSH receptors. Estrogen-activated ERα dimerizes and translocates to the nucleus where it regulates target gene tran-
scription by binding to short DNA sequences, known as estrogen-responsive elements (EREs), within gene promoters and by recruiting chromatin
protein complexes and transcriptional coregulators (CoR). Genomic responses may also derive from ERα interference with the expression or activity
of other transcription factors (TFs), such as nuclear factor-kappa enhancer of activated B cells and CCAAT-enhancer-binding protein-b, as well as by
a reduced availability of CoR. Hormone-activated ERα and GPER1 also directly induce cytoplasmic responses, including phosphatidylinositol-3 kinase
(PI3K) and mitogen-activated protein kinase (MAPK) activation, calcium mobilization, and cAMP formation. Under physiological conditions, estrogen
action in macrophages mediates several biological processes, which are overall associated with the induction of a tolerant immune environment for
the growth, specialization and remodeling of surrounding cells and tissues.

5Estrogens and macrophages in female reproductive tissues
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novel aspects of macrophage biology, such as ontogenesis, self-
renewal, function specialization and lineage heterogeneity. Thus, from
initial observations using classic inflammatory paradigms showing the
anti-inflammatory activity of estrogen, subsequent analysis demon-
strated a hormone effect also on macrophage reparative phenotype,
while only recently estrogen was envisioned as a physiologic signal
that may regulate macrophage reactivity per se (Bruce-Keller et al.,
2000; Vegeto et al., 2001; Salem, 2004; Campbell et al., 2014; Villa
et al., 2015). In the hypothesis of conceiving macrophages as key
messengers in FRT homeostasis orchestrated by estrogens, the fol-
lowing paragraphs discuss macrophage responses to estrogens
beyond immunity against infections, as summarized in Figure 1.

Proliferation
E2 has been implicated in macrophage proliferation via either direct
mechanisms or increased production of growth factors, such as epi-
dermal growth factor (EGF) and insulin-like growth factor 1, by non-
macrophage cells (Pollard et al., 1987; Klotz et al., 2002; Pepe et al.,
2017a, b). It still needs to be verified whether the renewal of resident
macrophages cyclically occurring in the FRT during the ovarian cycle,
particularly in the proliferative phase, also involves a direct prolifera-
tive effect of estrogens.

Immune polarization and extracellular communication
A comprehensive description of the genomic responses induced by
the estrogen surge in peritoneal macrophages of female mice showed
the dynamic and variable adaptation of macrophages to the hormonal
signal per se, in the absence of pathological or inflammatory stimuli,
which occurs through the regulation of early and late genes, such as
vascular endothelial growth factor (Vegf) and IL10 (Pepe et al.,
2017a). Under inflammatory conditions, estrogens have been pro-
posed to anticipate both the onset and termination, and to enhance
the potency, of the inflammatory response driven by macrophages
and to favor the transition towards an M2-like phenotype, in line with
improved outcome of inflammatory responses in female mice and
humans (Scotland et al., 2011; Bolego et al., 2013; Toniolo et al.,
2015; Villa et al., 2015; Rathod et al., 2017). These effects have been
reconciled with genomic and cytoplasmic mechanisms induced by
estrogen-activated ERα and GPER1. The activity of M1 or M2 stimuli
on the expression of genes, such as MMP9, tumor necrosis factor-α
(TNFa), IL1β and MIP2, or arginase 1 (ARG1), transglutaminase 2
(TGM2) and RELMα, respectively, is modified by the presence of
estrogens according to the tissue of origin of macrophages or the cell
line used (Frazier-Jessen and Kovacs, 1995; Pervin et al., 1998; Ruh
et al., 1998; Vegeto et al., 2004; Ghisletti et al., 2005; Ribas et al.,
2011; Campbell et al., 2014; Cote et al., 2015). E2-activated ERα may
also interfere with the activity of transcription factors that drive
macrophage polarization, while the effects on energy consumption
widely described for other target cells are still unknown in macro-
phages (Wang et al., 2001; Ghisletti et al., 2005; Duckles et al., 2006;
Mattingly et al., 2008; Dai et al., 2009; Xing et al., 2012; Villa et al.,
2015).

Studies focused on ECM remodeling, in particular on the wound
healing process, showed that estrogens hasten tissue repair by con-
tributing to epithelial, collagen and vascular remodeling through a dir-
ect activity on macrophages and the increased secretion of: tissue
repair molecules, such as RELM-α (Ashcroft et al., 1997; Liu et al.,

2004; Campbell et al., 2014); proteases, such as MMPs and cathe-
psins, and their inhibitors (Rochefort et al., 2001; Vegeto et al.,
2001); the TGM2 enzyme, a conserved M2 marker highly expressed
by human and murine macrophages in Th2-driven pathologies,
involved in matrix protein crosslinking, clearance of apoptotic cells
and promotion of an anti-inflammatory phenotype (Ribas et al., 2011;
Martinez et al., 2013; Eligini et al., 2016; Pepe et al., 2017a); and
fibroblast growth factor (FGF) and VEGF, through the involvement of
both ERα and GPER1 (McLaren et al., 1996; Kanda and Watanabe,
2002; Khan et al., 2005; Pepe et al., 2017a, b). Thus, matrix and
microenvironment remodeling by macrophages appears to be poten-
tiated by estrogen, as initially demonstrated in an animal model of
peritoneal adhesion formation in which estrogen administration
reduced connective tissue deposition (Frazier-Jessen et al., 1996).

Phagocytosis
Depending on the nature of the activating signal, estrogens are able
to modulate the phagocytic activity of macrophages. As shown for
immune polarization, estrogens exert opposite effects in the presence
of M1 or M2 stimuli, reducing the effects of LPS or β-amyloid on
phagocytosis and expression of receptors, such as CD14 and scaven-
ger receptor-A (SR-A), or enhancing the phagocytosis of parasite or
immunoglobulin-coated cells, possibly via increased expression of
macrophage receptors for ‘eat-me-signals’ (Bruce-Keller et al., 2000;
Vegeto et al., 2004, 2006; Hsieh et al., 2009; Yu et al., 2014; Saia
et al., 2015; Zhang et al., 2015; Ning et al., 2016).

Iron homeostasis
Iron is an essential cofactor for several metabolic processes within
cells, yet it is extremely toxic if not handled properly by tissues.
Resident macrophages process large amounts of iron through the
expression of receptors that import protein-bound iron, such as the
transferrin receptor 1 (TFRC) and CD163, or free extracellular iron,
such as six-transmembrane epithelial antigen of prostate 3 and diva-
lent metal transporter 1 (Kohyama et al., 2009; Haldar et al., 2014;
Korolnek and Hamza, 2015). Inside macrophages, iron may be used
for the cell metabolic demand, stored as a ferritin-bound form or
exported by ferroportin 1 (FPN). Iron efflux is negatively regulated by
hepcidin, an hepatic hormone that induces FPN endocytosis and deg-
radation (Nemeth et al., 2004). M1 macrophages develop an iron-
sequestering phenotype that restricts extracellular iron availability for
pathogens, while an iron-releasing phenotype that sustains the growth
of surrounding cells is ascribed to alternative activation of macro-
phages through the expression of genes involved in iron turnover,
mobilization and release (Cairo et al., 2011). Estrogens increase cellu-
lar iron uptake via the positive regulation of TFRC, iron binding pro-
teins and transporters as well as by a negative effect on hepcidin
expression in liver (Yang et al., 2012). In the FRT, estrogens induce
the temporally coordinated expression of genes related to iron
homeostasis, such as the iron delivery and exporter proteins, lacto-
transferrin, lipocalin 2 and FPN, respectively. By contrast, hormone
action in macrophages has been poorly investigated, with some con-
trasting results depending on the specific macrophage population ana-
lyzed (Pentecost and Teng, 1987; Huang et al., 1999; Stuckey et al.,
2006; Campesi et al., 2012; Yang et al., 2012; Hamad and Awadallah,
2013; Qian et al., 2015; Pepe et al., 2017a).
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Hemostasis and beyond
Macrophages are a source of factors for coagulation and complement
activation that contribute to thrombin and fibrin formation and plate-
let aggregation (van der Meer et al., 2014; Boyce et al., 2015). In
turn, molecules of the hemostatic system directly bind to macro-
phages through specific receptors and induce responses such as
inflammation, angiogenesis, phagocytosis and matrix remodeling. For
instance, thrombin and fibrin remain trapped in the perivascular space
after vessel rupture and from this site they bind to tissue resident
macrophages and induce the production of inflammatory and fibrino-
lytic mediators that are required for tissue healing (Gratchev et al.,
2001; Davalos et al., 2012). Although oral estrogen therapy is known
to induce a pro-coagulant state through the transcriptional regulation
of hemostasis genes in liver, additional details on how estrogens act
on FRT hemostasis are still lacking.

Cholesterol metabolism
Cholesterol is transported in blood in the form of cholesterol esters
(CEs) mainly bound to LDL and its cellular intake occurs through
endocytosis mediated by LDLR. Within endosomes/lysosomes, CEs
are hydrolyzed to release free cholesterol, which may be used for
membranes synthesis, stored in cytoplasmic lipid droplets continu-
ously processed by hydrolysis and re-esterification, or excreted by
efflux systems (Brown and Goldstein, 1983). Incorrect cholesterol
handling may transform macrophages into foam cells that sustain ath-
erosclerotic lesions formation (von Eckardstein, 1996). Consistent
evidence showed that E2 reduces the uptake and favors the efflux of
cholesterol by macrophages under inflammatory conditions, also by
down-regulating the expression of scavenger receptors CD36 and
SR-A (Tomita et al., 1996; McCrohon et al., 1999; Napolitano et al.,
2001; Allred et al., 2006; Vegeto et al., 2006; Rayner et al., 2008;
Wilson et al., 2008; Corcoran et al., 2011; Shchelkunova et al., 2013).
Human and mouse macrophages were shown to express steroido-
genic enzymes in vitro, depending on the tissue of origin (Rubinow,
2018).

Circadian rhythm
Circadian rhythmicity is driven by a molecular clock composed of a
transcriptional regulator complex that is mainly activated by daily
brain signals. However, an intrinsic molecular clock in peripheral tis-
sues also works independently of brain inputs and its disruption is
associated with chronic pathologies. In particular, clock gene expres-
sion in the ovaries is involved in the timing of reproductive events
and in fertility, as further discussed below (McAlpine and Swirski,
2016; Mereness et al., 2016; Sen and Sellix, 2016). Macrophages also
express circadian clock genes independently from the brain pace-
maker (Boivin et al., 2003; Keller et al., 2009); interestingly, the effi-
cient occurrence of macrophage inflammatory responses requires
clock genes and follows the circadian rhythmicity (Spengler et al.,
2012; Oliva-Ramírez et al., 2014; Nakazato et al., 2017). Endogenous
or pharmacological fluctuations of estrogens in rodents have been
shown to regulate the expression of clock genes, such as periodic cir-
cadian clock 1 and 2, in macrophages and in the FRT (Nakamura
et al., 2005, 2010; Zhu et al., 2015; Wiggins and Legge, 2016; Pepe
et al., 2017a).

The role of macrophages in
homeostasis of the FRT
The FRT is a site where the immune system is constantly balanced
between aggression and tolerance towards the seminal fluid, ferti-
lized egg and microorganisms as well as self-components and tissue
remodeling. Indeed, macrophages in the FRT not only protect
against infection but also participate in reproductive events through
the physical and functional interaction with surrounding cells,
matrix and fluids, similarly to macrophages that reside in brain,
liver or lung (Gertig and Hanisch, 2014; Lavin et al., 2014; Minutti
et al., 2017).

The number and function of FRT macrophages change in a precise
temporal and spatial manner during the ovarian cycle. Target cells for
estrogens include leukocytes of the FRT, which operate in synchrony
with other cells to adapt to the oocyte fate (Givan et al., 1997; Evans
and Salamonsen, 2012). The paragraphs below summarize the evi-
dence on macrophage distribution and functions in the ovaries, ovi-
ducts, uterus and lower genital tract, as summarized in Figure 2, and
the relevance of macrophages in ovarian and endometrial
pathologies.

Macrophage-depleted animal models
An undisputed advance to aid in the understanding of macrophage
physiology is provided by mouse models that allow for the constitu-
tive or conditional ablation of macrophages in vivo. Table II sum-
marizes the reproductive and FRT phenotypes together with the
drawbacks of the models, such as incomplete macrophage depletion,
as in the case of clodronate or monoclonal antibodies targeting
CSF1R (Van der Hoek et al., 2000; MacDonald et al., 2010; Sauter
et al., 2014), or developmental defects of the hypothalamus occurring
in mice bearing a null mutation in Csf1 (Csf1op/Csf1op) or Csf1r gene
knock-out, which alter reproductive functions independently of
macrophage number in the adult FRT (Cohen et al., 1999, 2002; Dai
et al., 2002). CD11b-Dtr transgenic mice, in which the diphtheria toxin
receptor (DTR) is specifically expressed by CD11b-positive cells,
may remove such obstacles and allow for the acute and reversible
reduction of macrophages in the entire organism including the FRT
(Duffield et al., 2005).

Macrophages in the ovaries
Cell distribution
Macrophages are preferentially located within the endocrine com-
partment of the ovary, where they change in number and function
during the ovarian cycle, as summarized in Figure 2. While absent
from the ovarian stroma and ovarian surface epithelium (OSE),
macrophages appear in the theca cell layer and interstitial space of
primary follicles at the early stages of development (Wu et al., 2004;
Gaytán et al., 2007). Macrophage cell number then gradually
increases, with a sudden rise in number in thecal layers in preovula-
tory follicles (Van der Hoek et al., 2000; Brännström and Enskog,
2002). Macrophages are excluded from the granulosa cell compart-
ment of antral follicles, while they are abundant in corpora lutea,
reaching a peak at luteal regression, and in atretic follicles, where
they are in contact with apoptotic granulosa cells (Wu et al., 2004).
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Ovarian macrophages seemingly derive from monocytes supplied by
blood that flows in the thecal, and not granulosa, compartment of
antral follicles and in the heavily vascularized corpora lutea; recruiting
factors, such as CSF1, MCP1/CCL2 and IL33, are produced by ovar-
ian and granulosa cells, and particularly in response to LH at ovulation
(Hume et al., 1984; Carlock et al., 2014).

The preferential location of macrophages at specific microanato-
mical regions within the ovaries reflects that seen in the pancreas
and testis, endocrine organs for which more details are available on
the role of macrophages in tissue homeostasis. In the pancreas and

testis, macrophages were shown to establish a symbiotic connec-
tion with endocrine and vascular cells, forming a functional unit that
is essential for the correct production of insulin and androgens,
respectively (Cohen et al., 1999; Turner et al., 2011; Calderon
et al., 2015; Unanue, 2016; Bhushan and Meinhardt, 2017).
Whether macrophages are similarly relevant for the endocrine
activity of the ovaries still needs to be defined. Conversely, it is
also of interest that macrophages are excluded from the non-
endocrine compartments, even at ovulation when the highly inflam-
matory microenvironment may favor their recruitment. As already

Figure 2 Distribution, phenotype and functions of FRT macrophages. Female reproductive tract (FRT) tissues are colonized by distinct popula-
tions of M1 and M2 macrophages. In the upper FRT, these cells change in number, distribution and function in association with estrous cycle phases
and fluctuations in estrogens levels. Macrophages with M2-like activities are more abundant during the preovulatory phase and also found in the cor-
pus luteum; inflammatory macrophages sharply increase immediately before ovulation in the ovaries and at the end of the ovarian cycle in the endo-
metrium and generally predominate in tissues during the post-ovulatory phase. In the lower FRT, macrophages remain more constant and have
mainly been associated with defensive mechanisms against pathogens invasion. Beyond this immune task, macrophages in the upper FRT participate
in specific processes (shown in italics), such as proliferation, differentiation and apoptosis of granulosa cells (GC), endocrine activity, ovulation and
vascularization in the ovaries, epithelial cell (EC) proliferation and secretory activity in the oviducts and endometrium, where they also regulate
extracellular matrix (ECM) and vascular remodeling. SMC: smooth muscle cell.
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mentioned, the OSE shows peculiar properties as compared with
other FRT epithelia, with which it shares a common embryonic ori-
gin; one such peculiarity is the absence of interactions with macro-
phages, which are instead tightly intermingled with epithelial cells
lining the endometrial surface and glands and the tubal wall (Gaytán
et al., 2007; King et al., 2011). On the other hand, macrophages
are found in association with ovarian epithelial cells when these are
transformed into metaplastic cells and it is thus supposed that
macrophages participate in ovarian carcinogenesis. Thus, it will be
important to understand the role of macrophages in ovarian endo-
crine activity and study the mechanisms that allow or inhibit these
cells to communicate with FRT epithelia (Gaytán et al., 2007).

Ovary-specific macrophage phenotypes and functions
Along with the increase in cell number, fluctuations in estrogen levels
associate with the acquisition of specialized functions by ovarian

macrophages that are necessary for the maturation of oocytes and
for the development, fate and vascularization of ovarian follicles.

Immune polarization and extracellular communication
Macrophages endowed with pro-healing and regenerative activities
accumulate during the preovulatory phase of follicle development and
favor granulosa cell proliferation through the production of growth
factors, such as basic FGF, EGF and VEGF (Care et al., 2013). On the
other hand, the peri-ovulatory phase is associated with an increase of
M1-like macrophages in the ovulating follicle. In fact, ovulation has
been described as an inflammatory event that mainly enrolls inflam-
matory macrophages, which sustain the infiltration of additional
immune cells, tissue disruption and the subsequent maturation and
functional specialization of granulosa cells through the secretion of
inflammatory mediators (i.e. chemokines, reactive nitrogen species,
prostaglandin F2α) and matrix remodeling enzymes (Espey, 1980;

......................................................................................

.............................................................................................................................................................................................

Table II Reproductive phenotypes in macrophage-depleted mouse models.

Mouse models Reproductive and endocrine
phenotypes in adult females

Female reproductive tract phenotype

Ovaries Endometrium Notes References

Conditional Clodronate
liposomes

Not described Reduced ovulation
rate.
Extended duration
of ME/DE stage

No MP depletion Intrabursal injections
reduce theca MP.
No liposomal
diffusion through the
endometrium

Van der
Hoek et al.
(2000)

Mab against
CSF1R

Estrous cycle is present.
Cycle onset and phases duration not
described.

No MP depletion
(complete MP
ablation in testis)

No MP depletion No reduction of
blood monocytes

MacDonald
et al. (2010);
Sauter et al.
(2014)

CD11b-Dtr Infertility when MP are depleted after
ovulation, as a result of failure to
form corpora lutea and to synthesize
progesterone.
Embryo implantation inhibited by MP
depletion after conception, rescued
by progesterone administration.

Hemorrhages.
Loss of integrity of
vessels and basal
membranes in antral
follicles and corpus
luteum.

E2-induced epithelial cell
proliferation in ovx mice
unaffected. Endothelial
cell number in ovx mice
unaffected.

Significant MP
reduction in ovaries
and uterus

Turner et al.
(2011); Care
et al. (2013);
Care et al.
(2014)

Constitutive Csf1op/
Csf1op

Reduced fertility.
Delayed microglial colonization of
the hypothalamus during
development; alteration of neuronal
circuitries governing feedback
sensitivity of GnRH neurons.
Reduced ovulatory frequency and
number.
Low pregnancy rates.
Absence of mammary gland
branching after parturition; females
unable to nurture their pups.
Absence of E2 surge at P, normal E2
levels at E, ME and DE.
Generally severe growth and
endocrine defects

Defective follicular
development.
Defective ovulation.
Delayed cycle
onset.
Prolonged cycle
length (mainly
stopped in ME).

Significant MP
reduction in antral
follicles

Cohen et al.
(1999, 2002)

Csf1r-/- Reduced fertility Prolonged cycle
length (mainly
stopped in ME)

Blood monocyte
reduction

Dai et al.
(2002)

CSF1, colony stimulating factor 1; CSF1R, CSF1 receptor; MP, macrophages; Mab-α, monoclonal antibody; E2, 17β-estradiol; ovx, ovariectomized; P, proestrus; E, estrous; ME,
metestrous; DE, diestrous.
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Machelon et al., 1995; Wong et al., 2002; Shkolnik et al., 2011;
Nakao et al., 2015). Macrophage-derived signals are also important
for vessel integrity of the antral follicle and corpus luteum, since
whole-body ablation of macrophages results in hemorrhage that is
limited to the ovaries (Turner et al., 2011; Care et al., 2013).
Apoptosis of granulosa and luteal cells is triggered by inflammatory
mediators, including TNFα, while an increased macrophage number
in the atretic follicle and corpus albicans has been associated with tis-
sue regression and removal through the release of catabolic media-
tors and phagocytosis (Pate and Landis Keyes, 2001; Stocco et al.,
2007; Shirasuna et al., 2013; Carlock et al., 2014; Wu et al., 2015).

Thus, ovarian follicles are populated by functionally distinct sub-
types of macrophages, as confirmed by the recent identification of
ovarian macrophage subsets that differentially express antigen pres-
entation and adhesion molecules (Carlock et al., 2013). Importantly,
a deranged balance between inflammatory and anti-inflammatory
phenotypes has been proposed as a pathological link towards infertil-
ity and ovarian dysfunction (Uri-Belapolsky et al., 2014).

Iron homeostasis
Non-heme iron in mouse ovaries is predominantly confined to
macrophages, especially those adjacent to degenerating corpora lutea
and apoptotic atretic follicles where ferrous ions are released (Asano,
2012). Both macrophages and the iron overload, derived from retro-
grade menstruation, are involved in the ceasing of ovarian function in
women approaching the menopause, while dysfunctional iron hand-
ling by ovarian macrophages appears to contribute to malignant
degeneration of the ovary (Vercellini et al., 2011).

Cholesterol metabolism and steroidogenesis
The growing follicle is a site of cholesterol enrichment for its usage
in steroidogenesis and incorporation into newly formed ovarian and
granulosa cells. Indeed, the metabolism of cholesterol used for
gonadal steroidogenesis drastically changes during the peri-ovulatory
phase in association with changes in macrophage number and
phenotype. As shown in Figure 2, steroidogenesis in theca, granulo-
sa and luteinizing cells is associated with resident macrophages
showing an alternative polarization phenotype, while the sharp pre-
ovulatory reduction in estrogen synthesis is linked to an increased
number of M1-like macrophages, which are known to inhibit steroi-
dogenesis through the secretion of inflammatory cytokines, both in
the ovaries and testes (Chen et al., 1992; Bornstein et al., 2004;
Samir et al., 2017; Leisegang and Henkel, 2018). Although macro-
phages are well-established regulators of cholesterol homeostasis,
the role and identity of mediators secreted by M2 macrophages are
still unknown, as well as if they directly supply cholesterol for ster-
oidogenic cells. As mentioned above, estrogens are able to both
stimulate cholesterol efflux in macrophages and induce their M2
polarization, suggesting that these cells might sustain estrogens syn-
thesis in response to estrogens themselves. Interestingly, an
increased number of lipid-laden macrophages are observed particu-
larly at sites of excess cholesterol accumulation and follicular atresia
in the ovaries of female patients with congenital lipoid adrenal
hyperplasia (lipoid CAH), an endocrine disorder linked to a defect
in steroidogenesis and premature ovarian failure, suggesting a role
for macrophages in cholesterol accumulation in the ovary (Ishii
et al., 2016). Nevertheless, cholesterol storage and usage by

ovarian macrophages are still too poorly defined to understand the
impact of these cells on the physiopathology and estrogen depend-
ence of ovarian endocrine activity.

Circadian rhythm
Clock genes expression in the ovary occurs in pre-antral follicles and
further increases in the late antral and preovulatory stages in granulo-
sa, theca and stromal cells and in oocytes (Fahrenkrug et al., 2006;
Karman and Tischkau, 2006). The circadian clock of the ovaries
drives the timing of expression of proteins that are crucial for ovarian
physiology, such as LH receptor and steroidogenesis enzymes, dem-
onstrating that the ovary clock plays an intrinsic role in the timing of
female reproduction (Yoshikawa et al., 2009; Nakamura et al., 2010;
Mereness et al., 2016). Indeed, disruption of the ovarian circadian
clock is associated with infertility and reproductive pathologies (Khan
et al., 2012; Simonneaux and Bahougne, 2015). It is increasingly evi-
dent that all events occurring during the reproductive cycle in females
are rhythmically regulated by an integrated network of hormonal and
circadian signals that derive from and operate in brain and FRT cells.
Emerging evidence suggests that these signals regulate each other, as
in the case of estrogen and clock gene expression in FRT, providing
an additional level of control in reproductive synchrony; dangerous
consequences for women’s fertility and health may also emerge when
impairment of this complex network occurs at any of its control
levels (Simonneaux and Bahougne, 2015).

Macrophages in the oviducts
Cell distribution
Macrophages are localized within the epithelial, lamina propria and
wall layer compartments of the human Fallopian tubes (Haney et al.,
1983; Ardighieri et al., 2014). Macrophages have also been identified
within the tubal lumen in close proximity to the cumulus cell complex
that surrounds the oocyte (Akkoyunlu et al., 2003; King et al., 2011).
Following ovulation, the Fallopian tubes are acutely exposed to the
follicular fluid that is enriched with inflammatory mediators (e.g. cyto-
kines, reactive oxygen species generating enzymes, proteases), which
increase the number of macrophages in the tubal walls and their
interactions with epithelial cells (King et al., 2011). Unlike epithelial
cells of the endometrium, the epithelial cells lining the oviduct walls
do not proliferate in response to ovulation nor estrogens, but their
DNA is frequently damaged by inflammation; importantly, epithelial
cells in the distal part of the Fallopian tubes may be sloughed by the
inflammatory burden driven by ovulation and penetrate the ovarian
surface together with macrophages, a mechanism that may be
involved in ovarian cancer pathogenesis (Kurman and Shih, 2010;
King et al., 2011). Thus, inflammation and macrophages in the ovarian
tubes have important functions for tissue homeostasis, although still
poorly deciphered. Interestingly, female patients with inflammatory
peritoneal disorders show higher levels of oviductal macrophages,
suggesting that tubal homeostasis is also influenced by peritoneal
inflammation (Haney et al., 1983).

Oviduct-specific macrophage phenotypes and functions: immune
polarization and extracellular communication
The mucosal secretions and resident immune cells of the uterine
tubes and oviducts represent, as for other mucosal surfaces,
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protective mechanisms against microorganism invasion as well as key
regulators of tissues homeostasis. Some evidence has shown
increased inflammation and macrophage density in the tubal mucosa
of women with ectopic implantation, infertility, infection spread and
neoplastic transformation suggesting a role for macrophages in tubal
cell motility and receptivity (Tonello and Poli, 2007; Shao et al., 2012;
Shaw and Horne, 2012; George et al., 2016). Moreover, prolonged
exposure to follicular and peritoneal fluid has been proposed as a
causative mechanism promoting tubal tumorigenesis (Vercellini et al.,
2011; George et al., 2016). However, little information is available on
the role of macrophages in tubal epithelial cell secretory function, and
the healthy and safe migration and fertilization of the oocyte within
uterine tubes.

Macrophages in the uterus
Cell distribution
Macrophages are non-uniformly scattered throughout the endomet-
rium and their density changes under the influence of hormonal fluc-
tuations. Figure 2 summarizes the data obtained in women and
rodent models, which showed that macrophages are mainly confined
to the superficial endometrial stroma during the repair and prolifera-
tive phases, with a preferential distribution around or even within
superficial endometrial glands, with no tendency to aggregate around
vessels; their density then significantly rises in the late secretory phase
in women or at diestrus in mice (Stewart and Mitchell, 1991;
Shimada-Hiratsuka et al., 2000; Russell et al., 2011, 2013;
Thiruchelvam et al., 2013; Cousins et al., 2016). Specific sets of che-
mokines are released by the epithelial, stromal, immune and vascular
compartments, with differences at each of these sites according with
the ovarian phase (Sanford et al., 1992; MacDonald et al., 2010;
Thiruchelvam et al., 2013). Macrophages are also found in the myo-
metrium, where their number remains constant throughout the ovar-
ian cycle. During the proliferative phase macrophages seem to derive
from the amplification of resident cells; interestingly, macrophage pre-
cursor cells are also present in the mouse uterus and depend on
ovarian steroid hormones for replication (Hudson Keenihan and
Robertson, 2004). On the other hand, a transient influx of mono-
cytes and monocyte-derived macrophages sustains the increase in
cell density in the late secretory phase (Cousins et al., 2016). The
presence of macrophages in the shed endometrium and denuded
luminal surface not only suggests their direct involvement in tissue
destruction and repair but also indicates that at least some of these
cells are not shed away during tissue remodeling. This opens the
important question, still barely addressed, related to the mechanisms
that remove macrophages to reduce their number. Macrophages may
leave the endometrium by trafficking to the lymph nodes, although
the endometrial lymphatic circulation is poorly developed, possibly to
protect the female’s immune system against autoantigens (Red-
Horse, 2008), or by moving to endometrial lymphoid aggregates.
These recently described structures have unknown functions but con-
tain macrophages in a greater number at the secretory phase
(Tabibzadeh, 1990; Red-Horse, 2008; Wira et al., 2014). In addition,
monocytes may be cleared by apoptosis following completion of
endometrial repair, as recently suggested (Cousins et al., 2016).

Thus, as in the ovaries and oviducts, macrophages in the endomet-
rium show preferential locations and specific cellular connections,

and are locally renewed from circulating precursors in response to
ovarian inputs at each new cycle.

Macrophages within the uterine lumen
The tissue(s) of origin of macrophages and other immune cells found
in the uterine and cervical fluids has not been defined yet.
Inflammatory cytokines are secreted into the uterine lumen by the
apical compartments of luminal epithelial cells. It is not known yet
whether these molecules attract macrophages from the lumen to the
epithelial wall, where they could integrate in the macrophage endo-
metrial compartment.

Uterus-specific macrophage phenotypes and functions
Histological and cytometric analyses in human and murine uteri
demonstrated the existence of distinct phenotypic subsets of macro-
phages preferentially located in close proximity to exocrine glands
and to areas of tissue remodeling, and therefore believed to partici-
pate in mucosal function as well as in tissue degradation, repair and
regeneration (Thiruchelvam et al., 2013). As occurs during the
wounding and healing of other mucosae, the shedding and recon-
struction of endometrial tissue require a series of well-controlled
events that accelerate re-epithelialization and inflammation without
scar or fibrosis formation; macrophages participate in all stages of
wound healing and tissue repair (Smigiel and Parks, 2018). As dis-
cussed below, novel experimental models now allow us to mimic
human menstruation in mice (Cousins et al., 2014); however, animal
models with whole-body depletion of macrophages are not suited
for studying the endometrium due to its functional dependence
upon the hypothalamus-pituitary-ovarian axis that is interrupted by
macrophage depletion (see Table I). To circumvent this problem,
ovariectomy is generally performed in female mice and, after few
days of estrogen conditioning, a single E2 administration is used to
assess a proliferative response of endometrial cells. These experi-
mental conditions have been used, for example by Care et al. in
CD11b-DTR females, to assess the contribution of macrophages to
hormone action (Care et al., 2014). Although the results showed a
dispensable role for macrophages in the estrogen-induced prolifer-
ation of differentiated epithelial cells of the endometrium, this
experimental setting appears limited in evaluating the contribution of
endometrial progenitor cells, although it is known that their regen-
erative potential sustains endometrial reconstitution through
repeated proliferation and differentiation cycles (Janzen et al., 2013;
Gargett et al., 2015). Endometrial precursor cells expand under the
positive regulation of estrogens and progesterone; as expected, the
number of epithelial and leukocyte progenitor cells is reduced in the
endometrium of ovariectomized mice (Deane et al., 2016).
Nevertheless, the responsiveness of resilient stem cells to estrogen
signaling is still uncertain; further studies and models are needed to
better understand estrogen action and their cellular targets in the
endometrium.

Immune polarization and extracellular communication
During the proliferative phase, endometrial macrophages express
membrane proteins (i.e. TFRC, CD69 and intracellular adhesion
molecule 1), matrix remodeling molecules and growth factors that
induce a permissive environment and allow the regeneration of tis-
sue and ECM in preparation for fertility (Salamonsen and Woolley,
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1999; Eidukaite and Tamosiunas, 2004; Thiruchelvam et al., 2013).
On the other hand, during the secretory phase macrophages gener-
ate a local inflammatory response via the release of cytokines (e.g.
MIP1β/CCL4 and macrophage migratory inhibitory protein) that
either permits embryo implantation during the ‘window of implant-
ation’ or induces uterine shedding, an event that further culminates
in menstruation only in some primates, including women
(Thiruchelvam et al., 2013). In vivo studies using artificially induced
menstruation in mice recently demonstrated that inflammatory
monocytes and monocyte-derived macrophages are recruited dur-
ing the simultaneous phases of tissue breakdown and repair to per-
form phagocytosis of apoptotic endothelial cells and tissue debris
along with resident macrophages (Cominelli et al., 2014; Cousins
et al., 2016). Transcription factors linked to phenotypic activation in
macrophages, such as members of the KLF family, are highly
expressed in reproductive tissues and have also been involved in
endometrial and FRT pathologies (Daftary et al., 2013; Simmen
et al., 2015).

Hemostasis and beyond
The relevance of hemostasis in the human endometrium is well-
established. The cessation of menstrual bleeding and subsequent
reconstruction of functional endometrium are accompanied by the
expression of coagulation factors, induction of platelet aggregation
and fibrin deposition, under the influence of the local inflammatory
and hormonal environment, while the reduction in tissue factor and
thrombin levels creates a pro-hemorrhagic and fibrinolytic milieu that
is associated with endometrial sloughing (Davies and Kadir, 2012).
Importantly, altered expression of hemostatic factors appears to be
involved in endometriosis (Schatz et al., 2016). Mostly, investigated
during pregnancy and labor, the contribution of macrophages to
hemostasis in reproductive cycles is still ill defined.

Extracellular communication
Breakdown of the functional endometrial layer recruits macrophages
mainly through the activity of MMPs and plasminogen activator,
whose expression is upregulated in macrophages and other uterine
cells during the menstrual phase (Jeziorska et al., 1996; Thiruchelvam
et al., 2013). Whether the hormone-induced activation of VEGF-A
mediated by ERα in macrophages is involved in the activity of these
cells on vascular permeability and remodeling still needs to be clari-
fied (McLaren et al., 1996; Kanda and Watanabe, 2002; Pepe et al.,
2017a). Through the secretion of factors, such as IL6, affecting the
glycosylation pattern of membrane proteins, uterine macrophages
also regulate the ability of uterine epithelial cells to create a receptive
surface for embryo implantation (Nakamura et al., 2012).

Iron homeostasis
Many genes related to iron homeostasis are upregulated in the
mouse uterus during endometrial growth and proliferation induced
by pharmacological treatment with estrogens, suggesting an import-
ant role for estrogens in iron metabolism, possibly to meet the
increased iron demand by replicating endometrial cells during the
proliferative phase (Stuckey et al., 2006). These cells may also include
ovarian macrophages that grant iron availability for surrounding endo-
metrial cells and for their own renewal and phenotypic adaptation.
Iron handling by macrophages is also important for mucosal

immunity, since iron proteins are also secreted into the uterine
luminal fluid, and to buffer iron overload associated with retrograde
menstruation and endometriosis in women (Defrere et al., 2008).

Macrophages in the lower genital tract
The cervicovaginal mucosa is a specialized immune organ that pre-
serves fertility by promoting tolerance to paternal antigens and by
protecting against genital pathogens (Zhou et al., 2018). Less informa-
tion is available on the physiology and endocrine regulation of macro-
phages that populate the lower genital tract (LGT), namely the cervix
and vagina, in non-pregnant, healthy females.

Cell distribution
Macrophages are a dominant population among vaginal and cervical
innate immune cells, with some differences among these anatom-
ical regions (Pudney et al., 2005). In contrast to the upper FRT,
their number appears almost stable throughout the menstrual cycle
with a slight increase in the cervical mucosa during the menstrual
phase, even though high intra- and inter-subject variability has been
reported (Pudney et al., 2005; Trifonova et al., 2014). Histological
observations of the mouse vaginal fold showed that the vaginal
mucosa undergoes extensive modifications in the number of leuko-
cytes, which are absent at proestrus and estrus while present at
metestrus and diestrus (Gal et al., 2014). Interestingly, inflamma-
tory mediators that are present in seminal fluid, such as cytokines
and prostaglandins, increase substantially the number of macro-
phages and other immune cells in the epithelium and stroma of
human cervix and uterus after coitus, further suggesting a role for
inflammatory cells in promoting fertility (Sharkey et al., 2012;
Adefuye et al., 2016).

LGT-specific macrophage phenotypes and functions
Since cervical macrophages contribute to the remodeling of the
LGT during parturition and represent a major cellular target for vir-
al infections in women, these cells have been intensely studied for
their immune functions in pregnancy-associated diseases or
sexually-transmitted infections. This research highlighted the func-
tional specialization of vaginal macrophages, as indicated by the
higher expression levels of CXCR4, the HIV-1 receptor, as com-
pared to those residing in other mucosae such as intestinal macro-
phages (Shen et al., 2009; Barreto-de-Souza et al., 2014; Roan and
Jakobsen, 2016). Interestingly, vaginal and cervical macrophages
preferentially reside along the stroma-epithelium interface; it has
been suggested that these cells migrate towards the epithelium or
even into cervicovaginal secretions (Pudney et al., 2005), to capture
and disseminate HIV infection through CXCR4 activity (Olesen
et al., 2016). However, little is known of the ontogeny and specific
functions of LGT macrophages beyond their role in immunity
against infections (Iijima et al., 2008).

Immune polarization and extracellular communication
The composition of inflammatory and defense-related proteins
(defensins) in the vaginal and cervical mucus varies during the men-
strual cycle, with their increased expression being strongly correlated
with decreased HIV infectivity and their dysregulation associated with
reproductive pathologies in women (Hughes et al., 2016; Grande
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et al., 2015, 2017). In the cervical tissue of healthy mice, estrogen has
been shown to modulate the expression of inflammatory genes, such
as IL1β and the S100 calcium binding protein A9 (S100a9) in vaginal
macrophages and dendritic cells by ERα-dependent pathways.
Subsequent activation of epithelial cells and differentiation of Th17
cells lead to enhanced anti-viral responses in the genital tract (Polan
et al., 1988; Stygar et al., 2007; Anipindi et al., 2016).

Thus, although only marginally addressed, the action of estrogens
in LGT macrophages is clearly associated with functional responses.

Macrophages and FRT pathologies
Gynecological dysfunctions and cancer
Emerging evidence indicates that ovarian dysfunction and diseases are
associated with impaired activity of ovarian macrophages. During sen-
escence, fibrotic transformation of ovarian tissue is accompanied by
accumulation of multinucleated macrophages with enhanced phago-
cytic function and production of pro-inflammatory factors (Asano,
2012; Briley et al., 2016). Activated macrophages with poorly charac-
terized phenotypes are also found in the follicular fluid of patients suf-
fering from premature ovarian failure and PCOS (Bukovsky and
Caudle, 2008, 2012). Macrophages with the M2-skewed phenotype,
known as tumor-associated macrophages (TAMs), are detected in
several tumors including gynecological cancers. TAMs show immuno-
suppressive and pro-tumorigenic effects and are intensely studied to
understand disease progression and to identify novel anticancer
agents (Krishnan et al., 2018). However, any potential stimulatory
effects on tumor growth specifically dictated by estrogen-induced
TAMs have not been elucidated.

Endometriosis
Endometriosis is a gynecological disorder characterized by ectopic
growth of endometrial tissue fragments on the surface of the periton-
eum and ovaries, causing pelvic pain and infertility. Endometrial cells
have access to the peritoneal cavity via retrograde migration through
the Fallopian tubes and adhesion and invasion of the mesothelial cell
layer of the peritoneum (Young et al., 2013). Ectopic endometrial
lesions are enriched with macrophages derived from both the shed
tissue itself and the peritoneal and vascular compartments. Under the
influence of endometriosis-associated pathologic signals, including
hypoxia, iron overload and inflammation, macrophages become
reprogrammed to operate in favor of lesion development, as sug-
gested by a derangement in immune polarization, phagocytosis and
vascular activity of macrophages and by their preferential location, as
in the endometrium, as single or aggregated cells in close proximity
to glandular structures in endometriotic tissue (McLaren et al., 1996,
1997; Nakamura et al., 2012; Greaves et al., 2014). A heterogeneous
population of potentially dangerous pro-inflammatory and anti-
inflammatory macrophages is present within or around the lesions,
since pro-angiogenetic, matrix remodeling, iron-recycling and growth
factors produced by M2 macrophages sustain endometriotic lesion
development and interactions with vasculature and nerve fibers, while
M1 macrophages enable early initiation of endometriosis and sustain
stromal cell activity via released pro-inflammatory molecules, such as
IL6, TNFα or prostaglandin E2 (Lin et al., 2006; Bacci et al., 2009;
Tran et al., 2009; Capobianco et al., 2011; Capobianco and Rovere-

Querini, 2013; Khan et al., 2015; Yuan et al., 2017; Burns et al.,
2018).

The ectopic endometrial tissue retains the ability to respond to
sex steroid hormones and undergoes destruction and remodeling
during the menstrual cycle, although this endocrine signaling is some-
how modified in endometriosis, as suggested by elevated estrogen
levels, progesterone resistance and altered expression of ERs, PR and
coregulators, and possibly by the limited therapeutic efficacy of hor-
monal drugs (Nasu et al., 2011; Han and O’Malley, 2014; Szwarc
et al., 2014; Han et al., 2015; Zhao et al., 2015). The use of novel
mouse models of menstruation and endometriosis will allow a better
understanding of estrogen–macrophage interplay in endometriosis, as
already suggested for innervation events of early lesion development
in animal models of disease (Greaves et al., 2015; Burns et al., 2018).
Thus, current data suggest that the estrogen–macrophage interplay
has a relevant impact on endometriosis through the amplification of
macrophages bearing a permissive phenotype for endometrial cell
proliferation, vascularization and innervation. Current therapeutic
interventions in endometriosis make use of progesterone, an off-
signal of estrogen activation, to oppose estrogens actions in endo-
metrial cells; being insensitive to progesterone, macrophage
responses to estrogens are probably unaffected by such therapies.
This therefore suggests the possibility of developing appropriate
antagonists of macrophage estrogen signaling as novel therapeutic
agents in endometriosis.

Discussion
Their distribution at specific locations in reproductive tissues, inter-
action with selected cell types, and acquisition of distinct phenotypes
and specialized functions strongly substantiate the hypothesis that
macrophages are key players in the homeostasis and rhythmical
renewal of the FRT. Importantly, the specificity of the intercellular
communications between macrophages and FRT cells, although still
poorly addressed, may induce phenotypically distinct subsets of
macrophages that express specific mediators, thus representing can-
didate therapeutic targets for infertility or FRT diseases. The peculiar
ability of macrophages to adapt and respond to diverse signals allows
them to actively participate in the coordination of reproductive
events by translating endocrine signals, such as estrogens or glucocor-
ticoids, and local cues, such as cytokines or hypoxia, into specific cel-
lular interconnections that are precisely organized in time and space,
as summarized in Figure 3A. The endocrine communication between
macrophages and reproductive tissues is mainly driven by estrogens,
whose function is associated with the diverse responses of FRT
macrophages. The physiological meaning of this interplay might be to
generate a tolerant environment for egg movement, fertilization and
implantation as well as to sustain a highly reactive and renewable sys-
tem for the cyclic remodeling of reproductive tissues. Accordingly,
derangements of macrophage function and responsiveness may be
involved in estrogen and macrophage-dependent gynecological dis-
eases, such as uterine cancer and endometriosis (Fig. 3B). A better
understanding of the molecular and cellular mechanisms that allow
macrophages to participate in the homeostasis of reproductive cycles
and to act as estrogen-responsive cells will provide new knowledge
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and potential pharmacological targets for reproductive procedures,
and for estrogen and macrophage-dependent gynecological diseases.
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