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Abstract: Background: A substantial body of studies supports the view that molecular and cellular 
features of endometriotic lesions differ from those of eutopic endometrium. Apart from that, evi-
dence exists that the eutopic endometrium from patients with endometriosis differs from that of 
females without endometriosis.  

Objective: Aberrant expression profiles include a number of non-steroid signaling pathways that 
exert their putative influence on the pathogenesis of endometriosis at least in part via crosstalk(s) 
with estrogen-mediated mechanisms. A rational to focus research on non-steroid signal pathways is 
that they might be remunerative targets for the development and selection of novel therapeutics to 
treat endometriosis possibly without affecting estrogen levels. 

Results and Conclusion: In this article, we describe molecular and cellular features of endometri-
otic lesions and focus on the canonical WNT/β-signaling pathway, a key regulatory system in biol-
ogy (including stem cell homeostasis) and often in pathophysiological conditions such as endome-
triosis. Recently emerged novel biological concepts in signal transduction and gene regulation like 
exosomes and microRNAs are discussed in their putative role in the pathogenesis of endometriosis. 
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1. INTRODUCTION 

 Endometriosis, a gynecological condition commonly 
observed in women of reproductive age, is histologically 
characterized by the presence and growth of endometrial-like 
glands and stroma outside the uterine cavity and muscula-
ture, which undergoes cyclic proliferation and breakdown 
similar to the endometrium. This internal bleeding, which 
cannot leave the body and remains on site, often results in 
local inflammatory reactions causing scar tissue formation 
and adhesions during repair processes. Endometriosis is in the 
majority of cases associated with dysmenorrhea, dyspareunia 
and/or pelvic pain, and can significantly compromise the 
quality of life of affected women. The prevalence in the gen-
eral population is difficult to determine, largely because it 
can be asymptomatic or misdiagnosed, hence it has been 
reported to be anywhere between 5-10% in menstruating 
women and up to 35% in infertile women [1-4]. 
 According to the literature, three different forms of  
endometriosis can occur in the pelvic cavity: peritoneal, 
ovarian, and deeply infiltrating lesions. The morphology and 
appearance of peritoneal and ovarian implants are described  
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as white (white, yellow-brown, and peritoneal defects such 
as blebs), red (red, red-pink, and clear lesions), and black 
(black and blue lesions) [5]. Red lesions are usually highly 
vascularized active lesions whilst white opacification and 
yellow-brown lesions are latent stages of endometriosis re-
sulting from inflammatory processes with subsequent fibro-
sis, total devascularization and the presence of old collagens 
as white plaques. Black lesions resemble enclosed implants 
with the presence of intraluminal debris formed by alternated 
tissue breakdown and healing during scarification of red le-
sions [5]. In rare cases, endometriosis occurs extraperitoneal 
in more remote sites including the colon, kidney, liver, pan-
creas and lungs [6-10]. 

1.1. Current Theories on the Pathogenesis of  
Endometriosis 

 To date the pathogenesis of endometriosis is still poorly 
understood and controversial despite decades of research. 
Several theories for its pathogenesis were proposed in recent 
years: i) implantation theory [11]; ii) metaplasia theory [12, 
13]; iii) induction theory [14]; endometriosis disease theory 
[15]; and iv) endometriosis as a stem cell based condition 
[16-18] and reviewed in [19, 20]. Recently, Laux-Biehlmann 
et al. proposed another way to look at endometriosis devel-
opment and associated pain based on inflammatory proc-
esses and activation of peripheral nerve endings in response 
to menstrual debris derived from retrograde and extra-uterine 
menstruation of endometriotic lesions [21]. 
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 The most widely accepted implantation theory [11] is 
based on the assumption that a small and early lesion is es-
tablished and its subsequent growth and invasion leads to a 
progressive disease. Here, the origin of endometriotic tissue 
in the pelvic cavity is retrograde transported viable menstrual 
endometrial cells. These shed menstrual endometrial cells 
retain the ability to attach to the peritoneum, proliferate and 
differentiate, and invade the underlying tissue. Further dis-
persion of endometrial cells via the lymphatic systems [22, 
23] and reviewed in [24] might be the origin of lesions at 
more distant locations such as thoracic or cerebellar endome-
triosis [10, 25, 26]. 
 As a prerequisite to support the implantation theory sev-
eral factors have to be met: i) occurrence of retrograde men-
struation [27-29]; ii) presence of viable endometrial cells in 
the retrograde refluxed menstrual efflux [30, 31]; and iii) 
adhesive capacity of shed endometrial cells onto the perito-
neum alongside proliferation and implantation [32]. 
 The peritoneal cavity underlies a dynamic change of fluid 
(peritoneal fluid, PF) derived from e.g. macrophage secre-
tions, ovarian exudate, refluxed tubal fluid, plasma transu-
date and refluxed endometrial material via retrograde men-
struation and is thus an important constituent of the perito-
neal environment [33, 34]. This dynamic exchange of fluid 
in the pelvic cavity could be one explanation for the ana-
tomical distribution of endometriotic lesions that correlates 
well with principles of transplant biology [7, 35] and is thus 
in favor of the implantation theory. On the other hand, en-
dometriosis is observed in only a subgroup of women, de-
spite the fact that PF contains endometrial tissue in up to 
59% of patients irrespective of endometriosis present or the 
stages of the menstrual cycle [32, 36-39]. However, a pro-
longed and heavier menstrual flow observed in women with 
endometriosis could increase the retrograde refluxed material 
in the pelvic cavity in comparison to healthy women with 
patent tubes [38, 40, 41]. 
 The phenomenon of restricted endometriosis develop-
ment could therefore be due to a permissive peritoneal envi-
ronment favoring the implantation and growth of endo-
metrial cells in only a certain subgroup of women. It is there-
fore conceivable that early endometriotic foci development 
depends not only on their location and depth of infiltration 
but also on the influence of various factors such as hor-
mones, cytokines, growth factors and other factors present in 
peritoneal or ovarian fluid or the blood stream [42]. In line 
with this notion is the observation that eutopic and ectopic 
endometrial cell proliferation is enhanced in the presence of 
PF and follicular fluid from women with endometriosis [34, 
43-45]. Tumor necrosis factor-α (TNF-α) is one factor re-
sponsible for this increased proliferative potential [45-48] 
but also the influence of other cytokines and steroid hor-
mones have been investigated [47-50]. A recent study by 
Han et al. shows the requirement for estrogen-mediated sig-
naling and TNF-α for apoptosis evasion and enhanced pro-
liferation of ectopic lesions in an animal model [51]. Another 
possibility for generating a permissive environment for en-
dometriosis induction could be a natural occuring micro-
trauma of the e.g. the uterus or the peritoneal surfaces fol-
lowed by intrinsic inflammatory responses and repair 
mechanism. Leyendecker and colleagues proposed a new 
concept of tissue injury and repair mechanism (TIAR) (re-

viewed in [52, 53]) to explain a common pathophysiology of 
adenomyosis and endometriosis development. TIAR is based 
on the observation that women suffering from endometriosis 
or adenomyosis display alterations in dysperi- and hyperstal-
sis waves (reviewed in [54, 55]) which might attribute for 
more trauma. In addition, this altered uterine peristalsis 
could cause the dislocation of more basal endometrium und 
thus a greater number of stem cell-like cells present in the 
retrograde refluxed menstruum [56]. Furthermore, eutopic 
endometrium from women with endometriosis displays a 
reduced decidualization capacity [57] indicating that more 
un-differentiated cells are flushed retrogradely into the peri-
toneal cavity. Microtrauma could also cause the exposure of 
extracellular matrix components (ECM) in the peritoneal 
cavity which has been shown to promote adhesion and pro-
liferation of endometrial stromal cells [58]. Furthermore, 
surgery in itself could aggravate the development or progres-
sion of endometriosis by repair processes under the concept 
of TIAR. 
 As an alternative to the implantation theory serves the 
coelomic metaplasia theory of Müllerian-type epithelium 
[12, 13] which could explain the rare cases of endometriosis 
in women without retrograde menstruation or with abnormal 
fallopian tubes [59] and in men undergoing high doses of 
estrogen treatment for prostatic carcinoma [6] or suffering 
from Persistent Mullerian Duct Syndrome (PMDS) [60]. An 
indication that endometriosis could develop by metaplasia 
comes from women suffering from the Mayer-Rokitansky-
Küster-Hauser (MRKH) syndrome which developed endo-
metriosis despite the absence of menstruation [61-63]. 
Women with MRHK display various degrees of müllerian 
duct defects such as congenital absence of uterus and vagina 
or only a rudimentary uterus with or without functional en-
dometrium [64]. Endometriosis could develop through meta-
plasia under these circumstances due to e.g. aberrant activa-
tion of genes in the peritoneum normally active during em-
bryonic development of the female genital tract including 
uterine gland development [65]. The concept of metaplasia is 
also reflected in the embryonic rest theory as developmen-
tally misplaced müllerian/endometrial tissue could be stimu-
lated to undergo metaplasia. This is supported by recent evi-
dence that displaced embryonic epithelial remnants or ectopic 
endometrial-like glands can be found along the fetal female 
reproductive tract [66-68] serving as a possible source for 
endometriotic lesions. However, endometriotic lesions occur 
also at other sites outside the course of the Müllerian ducts. 
 The induction theory represents a combination of the 
implantation and coelomic metaplasia theories and postulates 
that unknown substances released from shed and degenerat-
ing endometrium induces undifferentiated mesenchyma to 
form endometrial-like tissue [14]. In summary, the above 
theories focus on the onset of endometriotic lesions but are 
insufficient to explain the occurrence of severe endometri-
osis. The step-wise progression from temporary lesions to 
early endometriotic lesions and into severe forms resembling 
benign tumors might be explained by cellular modifications 
resulting from epigenetic or genetic alterations and is ad-
dressed in the endometriotic disease theory (EDT) [15]. 
 In favor of this (epi)genetic concept is the observation 
that cystic ovarian endometriosis is clonal in origin [69, 70] 
and that some endometriotic cells are invasive in vitro, asso-
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ciated with the loss of E(pithelial)-cadherin expression, a 
phenomenon usually observed in tumor biology [71, 72]. In 
addition, there is increasing evidence of a germline predispo-
sition to endometriosis. A familial clustering of endometri-
osis in humans [73] and rhesus monkeys [74] as well as in-
creased prevalence among first-degree relatives of women 
with all disease severities compared to the general popula-
tion [75] has been reported. Furthermore, the age at onset of 
symptoms is similar in affected, non-twin sisters [76] and 
there is concordance in monozygotic twins [74]. Addition-
ally, environmental factors, such as chronic exposure to di-
oxins might also play a role in disease etiology [15, 77]. 
These observations lead to the conclusion that endometriosis 
is likely to be a complex genetic trait in which multiple 
genes interact with each other and the environment to pro-
duce the disease phenotype [15]. 
 The endometrium is a highly regenerative tissue and it is 
not surprising that it contains cells with stem cell characteris-
tics (reviewed in [19, 20, 78]). Evidence that endometriosis 
might be a stem cell-based condition comes from the obser-
vation that freshly isolated endometrial epithelial and stro-
mal cells contain a rare population of cells with clonogenic 
activity visualized as colony-forming units (CFUs; [79]). 
The CFUs in the endometrial stromal cell fractions are com-
parable to mesenchymal stem cells (MSC) in their multiline-
age differentiation potential [80]. Enrichment of these endo-
metrial MSC-like cells (eMSCs) is possible by their co-
expression of the perivascular cell markers CD146 and 
PDGF-Rb. The clonogenicity of the endometrial epithelial 
and stromal cells showed a non-significant trend depending 
on the menstrual cycle stage with an increased clonogenicity 
in the proliferative stage for stromal cells and in the secre-
tory stage for epithelial cells. CFUs could also be detected in 
noncycling endometrium [81]. 
 Retrograde misplaced MSCs in the pelvic cavity could 
therefore be a critical factor in establishing an early endo-
metriotic lesion. More importantly, menstrual blood contains 
cells with plasticity, namely Endometrial Regenerative Cells 
(ERC; [82]). ERCs resemble MSC in their appearance, 
growth properties and differentiation potential into various 
cell types. However, in contrast to MSCs, they express ma-
trix-metalloproteases (MMP-3 and MMP-10), the angiogenic 
factor ANG-2 and cytokines (GM-CSF, PDGF-BB) as re-
vealed by proteome analysis [82]. Musina et al. described 
the morphology of menstrual blood-derived MSC (referred 
to as MenSCs or MMCs) as typical fibroblast-like and simi-
lar to bone marrow-derived MSCs [83]. Another study con-
firmed the broad plasticity of MenSCs [84]. In general, 
MenSCs display a higher clonogenicity, proliferation and 
migration rate than bone marrow-derived MSCs and higher 
angiogenic potential both in vitro and in an animal model 
[85]. Hida et al. tested the potential of MenSCs to participate 
in repair processes in a rat model of Myocardial Infarction 
[86]. Here, MenSCs participated in the restoration of im-
paired cardiac function by differentiating into MenSCs-
derived cardiomyocytes at the transplantation site. MenSCs 
can exert antimicrobial and immunomodulatory properties 
and secrete tissue regenerative factors in the cecal ligation 
and puncture (CLP) mouse sepsis model [87]. However the 
immunomodulatory capacities of MenSCs depend on the 
animal model system as e.g. lower immunosuppressive abil-

ity is observed in a chronic inflammatory arthritis (CIA) 
animal model whilst in an experimental xenogenic graft  
versus host disease (GVHD) model MenSCs caused higher 
survival rates independent of the degree of inflammation 
[88]. 
 Thus menstrual blood contains cells with plasticity which 
are a novel source for cell-based replacement therapies (re-
viewed in [89]). These results clearly indicate that retrograde 
menstruation can transport cells with a stem-cell-like pheno-
type into the pelvic cavity and that possibly more than one 
cell type with putative stem/progenitor cell properties exists. 
The research into menstrual blood derived cells with plastic-
ity is still at an early stage. This is also the reason why sev-
eral studies report the expression of different immunopheno-
typic profiles of MenSCs [90]. A standardized approach to 
isolate and characterize the stem cell-like cells in menstrual 
blood is of importance to decipher their role in the patho-
genesis of endometriosis. 

1.2. Pathogenesis of Endometriotic Lesions 
 Irrespective of the mechanism, one can presume that 
peritoneal, ovarian and rectovaginal lesions may have dis-
crete pathologies and etiologies [5]. The pathogenesis of 
peritoneal endometriotic lesions is most likely due to the 
implantation of retrograde refluxed menstrual endometrium 
through the fallopian tubes during menstruation [5, 11, 91, 92]. 
 Ovarian endometriosis formation manifesting as typical 
chocolate cysts is apparently more controversial. It might be 
attributable to several scenarios: i) inversion and progressive 
invagination of the ovarian cortex after accumulation of 
menstrual debris derived from bleeding of superficial endo-
metriotic implants, which are located on the ovarian surface 
and adherent to the peritoneum [35, 93, 94]; ii) secondary 
involvement of functional ovarian cysts by endometrial im-
plants located on the ovarian surface [95-97]; or iii) metapla-
sia of the coelomic epithelium covering the ovary [5, 12, 98]. 
 For the formation of deeply infiltrating endometriosis of 
the rectovaginal septum a natural evolution of peritoneal 
endometriosis of the pouch of Douglas due to secondary 
infiltration has been proposed [99, 100] and reviewed in 
[101]. It could also be an adenomyotic nodule originating by 
metaplasia of müllerian/embryonic remnants located in the 
rectovaginal septum [5]. 
 A permissive peritoneal environment for the onset and 
progression of endometriotic lesions might also be associ-
ated with altered function of immune-related cells alongside 
the local pelvic inflammatory processes aiding the evasion of 
clearance by the immune system. Evidence in the literature 
indicates a reduced macrophage-mediated cytolysis in 
women with endometriosis [102] and altered leukocyte 
populations within endometriotic lesions possibly secreting 
abnormal levels of local and systemic proinflammatory cy-
tokines and growth factors with growth-promoting and angi-
ogenic properties [103, 104]. Apart from the amount of re-
fluxed menstrual endometrium present in the peritoneal cav-
ity altered secretion of immune factors, formation of autoan-
tibodies, impaired immune recognition and clearance of ec-
topic endometrial cells facilitate the onset and progression of 
endometriosis [105-107]. A recent viewpoint by Laschke and 
Menger suggests that the gut microbiome could be crucial in 
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the pathogenesis of endometriosis by aberrant priming of 
immune responses [108]. Clearly, an altered immune re-
sponse is a key factor in evasion of apoptosis of endometrial 
cells at ectopic sites in women with endometriosis (reviewed 
in [109]). 

1.3. Classification Systems of Endometriosis 

 To date, a number of proposed systems to classify the 
different forms of endometriosis exist. These include those 
by Acosta et al. [110], Kistner et al. [111], the American 
Fertility Classification [112] and its modifications and re-
naming into revised American Society for Reproductive 
Medicine classification of endometriosis [113, 114]. Primar-
ily, all of these classifications divide endometriosis into 
various stages related to stages of increasing severity with 
involvement of the ovaries and with adhesion formation. The 
number, size and location of peritoneal endometrial im-
plants, plaques, endometriomas and/or adhesions charted 
with a score system translate then into various disease stages. 
The common goal of these classification systems is to pre-
dict based on disease severity, the chance for conception 
after treatment. 
 The rASRM classification [112-114] is used most com-
monly in investigative studies hence providing a tool to 
compare results published by different authors. It has been 
shown to provide a good and reproducible tool in staging 
endometriosis both during surgery and by a blinded reviewer 
using visual documentation [115]. However, other studies 
showed that the rASRM classification system is prone to 
observational error and is not as effective in predicting preg-
nancy [116-118]. A limitation of the rASRM staging system 
is the scoring of only intraperitoneal endometriosis thereby 
underrepresenting other manifestations of endometriosis 
such as extraperitoneal lesions in the bowl or bladder. 
 New options to classify and score endometriosis are 
therefore currently under investigation in order to reflect the 
multifaceted aspects of endometriosis and its impact on fer-
tility. One of them is the endometriosis fertility index (EFI) 
which is a tool to assess pregnancy outcomes after endome-
triosis surgery [119]. The EFI takes into consideration the 
reproductive potential by scoring the fallopian tubes, fimbria 
and ovaries omitting uterine abnormalities. The ENZIAN-
score is a staging system based on tumor grading systems 
which takes the localization and severity of deep infiltrating 
and retroperitoneal lesions into account [120]. Clinical as-
sessment of the practicality and reproducibility of the 
ENZIAN-score revealed that it is helpful but requires further 
adaptations [121]. One critical aspect is e.g. the occurrence 
of duplicate scoring of lesion between rASRM and ENZIAN 
staging systems thus ENZIAN is in its current version not a 
complementation of the rASRM system. Its revisions simpli-
fied the scoring system and enhanced its benefit for staging 
deep infiltrating retroperitoneal endometriosis but it still 
lacks poor international acceptance [122-125]. 

1.4. Local Microenvironment: Driving Factor in the  
Onset and Progression of Endometriotic Lesions 

 Endometriotic lesions are composed of the same struc-
tural units as the lining of the uterus, the endometrium. The 
main components are glandular epithelial cells surrounded 

by stromal cells embedded at the ectopic site. Glandular epi-
thelium is cytokeratin positive and is apparently composed 
of two cells types, namely E-cadherin positive and very few 
E-cadherin negative cells. This phenomenon of rare E-
cadherin negative cells in endometriotic glands was first re-
ported by our group for peritoneal lesions [72, 126] and has 
since been observed for ovarian endometrioma and rec-
tovaginal endometriosis by others [127]. Endometriotic 
stromal cells express mesenchymal markers such as vimentin 
and THY-1 and can be distinguished from surrounding fi-
broblasts by e.g. expression of the membrane metallo-
endopeptidase CD10 (common acute lymphocytic leukemia 
antigen, CALLA) [57, 128-130]. Differences in the composi-
tion of the extracellular matrix (ECM) surrounding endo-
metriotic glands and stroma is also reported [131-133] which 
could influence the functional responses of e.g. endometri-
otic stromal cells such as their adhesive, proliferative and 
invasive properties [58]. 
 The local microenvironment plays a pivotal role in the 
onset and progression of an endometriotic lesion, as mis-
placed endometrial cells need to respond to local stimuli 
such as factors in PF, evasion of immune detections and ad-
hesion to the host tissue surface [109, 134]. Once an ectopic 
lesion is formed crosstalk between stromal and epithelial 
cells, paracrine signaling, hormonal responsiveness and an-
giogenesis are required for the persistence at the ectopic site. 
A study by Hull et al. identified key pathways active in the 
molecular interactions between ectopic endometrial tissue 
and its site of attachment [135]. In an elegant approach, 
comparing microarray data obtained from a xenotransplant 
model and paired eutopic versus ectopic endometrial sam-
ples, they identified alterations in four pathways: cellular 
injury (ubiquitin/proteasome), inflammation (NFκB), tissue 
remodeling (TGF-β) and cellular proliferation (KRAS). A 
very recent proteomic study of peritoneal endometriotic 
stromal cells revealed extensive metabolic reprogramming 
and acquisition of cancer-like changes reflected in increased 
cellular invasiveness and adhesiveness, reduced apoptotic 
potential and altered immune function [136]. 
 The local microenvironment could also influence the 
growth and differentiation ability of the misplaced cells by 
altering gene expression through e.g. epigenetic changes 
(DNA methylation, histone modifications, miRNA; reviewed 
in [137, 138]). An increasing body of evidence exists on the 
role of microRNAs in endometriosis progression. In particu-
lar it was speculated by Teague et al. that endometriosis-
associated molecular networks [135] are regulated by 
miRNA at the posttranscriptional level [139]. Indeed, they 
identified 22 miRNAs as aberrantly expressed in endometri-
otic lesions [139]. Zhao et al. performed an association study 
aiming to explore the relationship between these 22 miRNA 
and SNPs in their target sites for the risk of developing en-
dometriosis [140]. Another study investigated the miRNome 
of peritoneal lesions and identified 5 unique miRNAs present 
in endometriotic epithelial cells which are not found in the 
surrounding healthy tissue [141]. 
 Apart from differential expressed miRNAs, altered DNA 
methylation pattern occur during endometriosis onset and/or 
progression. As endometriosis is an estrogen-dependent but 
progesterone resistant condition it is not surprising that their 
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respective promotor regions are affected accordingly [142, 
143]. Beside epigenetic modifications, endometriotic cells 
display also chromosomal anomalies and instability that 
could alter gene expression by loss of or mutations of DNA 
sequences (reviewed in [144, 145]). This could be one 
mechanism to explain the observed deregulation of signaling 
pathways in endometriotic cells if for example key regula-
tory proteins are affected by the genetic alterations. 
 With the discovery that cells release extracellular vesicles 
(EVs) such as exosomes and microvesicles composed of 
diverse types of membranes of plasma and endosomal mem-
brane origin researchers focused on extracting these EVs 
from various body fluids. EVs are an alternative source for 
intercellular communication as they contain e.g. miRNAs or 
enzymes and are able to modulate cellular responses e.g. 
survival, differentiation or modulation of immunogenic  
responses (reviewed in [146, 147]). Thus, exosomes could 
also be important for endometriosis as endometrial epithelial 
cell-derived exosomes contain miRNAs with target genes in 
signaling pathways connected to successful embryo-
endometrial crosstalk during implantation such as adherence 
junctions, ECM-receptor interactions, the VEGF-signaling 
pathway, the Jak-STAT pathway and the Toll-like receptor 
signaling pathway [148]. Texidó et al. could show the pres-
ence of ectonucleotidase containing exosomes in aspirates 
from endometriomas which could contribute to endometri-
osis progression and local suppression of immune responses 
by regulating extracellular ATP and rising extracellular 
adenosine levels [149]. A study by Harp et al. showed that 
endometriotic stromal cell derived exosomes could exert 
enhanced angiogenic effects [150]. Another study by Braza-
Boïls et al. observed a modified miRNA expression profile 
in endometrial stromal cells from women with endometriosis 
including miRNAs involved in angiogenesis mediated by 
peritoneal fluid (PF) from endometriosis patients [151]. It is 
conceivable that endometrial exosomes could be flushed 
retrograde into the pelvic cavity or be shed there by men-
strual cells and influence the fate of ectopic cells. Exosomes 
could therefore be one important factor to enable a tempo-
rary endometriotic lesion to establish a sufficient blood sup-
ply in order to grow and survive at the ectopic site as they 
act in an autocrine, paracrine and endocrine manner in inter-
cellular communication. Endometrial exosomes from women 
with endometriosis might also play a role in endometriosis 
manifestation as a disease. The onset and progression of en-
dometriosis could therefore be a combination of several steps 
and factors. The seeding endometrial tissue in women with 
endometriosis displays intrinsic (epi)genetic, biochemical 
and structural changes [57, 152-158] and their shed endo-
metrial-derived exosomes could prime the soil for attach-
ment at ectopic sites by retrograde flushed exosomes into the 
peritoneal cavity and local modulation of cells and tissue via 
intercellular communication. Retrograde transported men-
strual cells could attach to this primed soil and form tempo-
rary lesions. The released exosomes of ectopic endometrial 
cells could facilitate immune evasion; enhance proliferation, 
invasion and angiogenesis of the lesion and subsequent pro-
gression into a persistent endometriotic lesion (Fig. 1). 
Thereby intercellular communication mediated via exosomes 
could also represent a missing link between the different 
theories on the pathogenesis of endometriosis. Exosomes 

released by eutopic or ectopic endometrium or shed endo-
metrial cells could e.g. induce metaplasia of cells at ectopic 
sites (coelomic metaplasia and induction theories) or aid in 
tissue remodeling after injury (TIAR concept). Furthermore, 
exosomes could exert morphoregulatory function by altering 
signal transduction pathways. 

1.5. Non-Steroid Signaling: The WNT Connection in En-
dometriosis 

 As outlined in this article and by other authors in this 
issue, the establishment and progression of endometriosis as 
a disease requires a number of biological processes that ap-
pear aberrant in ectopic endometrium if compared to eutopic 
endometrium. These differences concern for example the 
responsiveness of the ectopic cells to a variety of signaling 
peptides, subsequently their adhesion to and invasion into 
the peritoneum, their morphogenesis, development and dys-
regulation of apoptosis as well as the angiogenesis in the 
ectopic endometrium. Since endometriosis is frequently a 
relapsing disease (eventually even after hysterectomy), a 
subpopulation of endometriotic cells exhibits most likely 
stem cell characteristics and/or plasticity, prerequisites for 
the recurrence of the disease (see outlined above). Apart 
from the morphological similarities between eutopic and 
ectopic endometrium, numerous studies revealed differences 
in the transcriptome of the two tissues. For example, com-
parative analyses of gene expression patterns between eu-
topic and ectopic endometrium [159] discovered many dys-
regulated genes assigned to particular pathways. Among 
others and as anticipated, these were genes of the cell cycle, 
adherence and tight junctions as well as those of MAP 
kinase, TGF-β, WNT, Jak-STAT and mTOR signaling path-
ways. In addition, a number of cytokine-cytokine receptor 
interactions appeared dysregulated. Whether and how far  
the indicated pathways contribute to the pathogenesis of  
endometriosis by integrating different signals and activities 
is poorly understood and under intensive investigation.  
Although considered an estrogen-dependent disorder, several 
non-steroid pathways are apparently important for the patho-
genesis of endometriosis. Therefore, it is the hope that  
effectors of signaling pathways possibly involved in the 
pathogenesis of endometriosis, particularly kinases, may 
serve as potential targets for non-steroid therapeutics in the 
future (reviewed in [160]). 
 Hence, a highly relevant issue related to the analyses of 
different signaling pathways in endometriosis is whether and 
how female sex hormones, the estrogens (E2), possibly con-
nect to and affect non-steroid signaling activities. In recent 
years, several studies have searched for such interactions and 
for example found them in the context of the WNT/β-catenin 
signal pathway. This part of the paragraph will focus on such 
findings. 
 The canonical WNT/β-catenin signal pathway, stimulated 
by individual WNT ligands binding to the frizzled and 
LRP5/6 receptors, is a key regulatory system in biology and 
often in pathophysiology. It is essential for the development 
of multicellular organisms (from hydra to mammals) as well 
as for the homeostasis of many of their regenerating tissues. 
A substantial body of literature presents findings that prena-
tal as well as postnatal processes are orchestrated by WNT 



Molecular and Cellular Pathogenesis of Endometriosis Current Women’s Health Reviews, 2018, Vol. 14, No. 2    111 

 

Fig. (1). Schematic overview of endometriosis development. Shed menstrual endometrium leaves the cavity mainly antegradely (black 
arrow) but is also flushed retrograde into the pelvic cavity (red arrow). Endometrial derived exosomes can also be transported retrograde into 
the pelvic cavity even in the absence of menstruation (grey and blue filled circles). Once in the pelvic cavity, menstrual cells can attach by 
gravity to the peritoneal surfaces and form temporary lesions. In healthy women, temporary ectopic lesions are removed by the immune sys-
tem through apoptosis induction. In women developing endometriosis as a disease, these ectopic lesions evade the immunosurveillance and 
progress in response to e.g. locally present cytokines and/or growth factors (blue arrow). Exosomes derived from endometriotic cells (green 
filled circles) could act in an autocrine/paracrine manner but could also be transported back through the fallopian tubes into the uterine cavity 
(green arrow) and modulate signaling events in eutopic endometrium. Albeit the implantation theory is the most likely explanation for the 
pathophysiological lesion formation, the step-wise development of ectopic lesions could also be explained in part by other proposed theories. 
For example, the TIAR concept suggests that trauma could cause the displacement of lamina basalis cells (altered uterine contractility) but 
also the exposure of ectopic attachment sites (injury). This could allow the attachment and invasion of ectopic cells followed by wound clo-
sure. It is also conceivable that exosomes could mediate metaplasia of peritoneal cells in other cases. 
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signaling, in particular those which depend on the proper 
renewal (and thus controlled proliferation) of somatic stem 
cells. Examples are endometrium, mammary gland, blood 
vessels and intestine. Notably, dysregulated and/or mutated 
components of the WNT/β-catenin pathway often contribute 
to formation and/or progression of different types of tumors 
but also other human diseases such as osteoporosis or type 2 
diabetes (reviewed in [161]). Although WNT signaling is 
subject of intensive studies in many research areas, it is only 
limited in the focus of investigations in endometriosis. 
 The central signal-transducing molecule of the WNT 
pathway is the multifunctional protein β -catenin, belonging 
to the family of armadillo-repeat proteins. It is a direct bind-
ing partner of the intercellular adhesion and metastasis sup-
pressor protein E-cadherin thereby exerting a morphoregula-
tory function. Hence, it is important for the structure and 
stabilization of the adherence junctions (AJ) and thus for 
formation of functional epithelial tissues. Disruption of AJs 
by stimulation of epithelial mesenchymal transition (EMT) 
through signaling of for example receptor tyrosine kinases 
(RTK; e.g. EGF receptors) induces loss of epithelial cell 
architecture. Consequently, cells become more motile and 
may invade surrounding tissue (reviewed in [162]). 
 Cytoplasmic ß-catenin not binding to E-cadherin under-
lies constant degradation, a process highly controlled by dif-
ferent proteins and a cascade of phosphorylation events at β-
catenin itself. Within this process, phosphorylation of β -
catenin through kinase GSK3β finally initiates its degrada-
tion. In turn, inhibition of GSK3β leads to stabilization of β-
catenin allowing its transcriptional activation as described 
below. 
 Stabilized β -catenin can reach the nucleus and interact 
with members of the transcription factor family TCF-LEF. 
This complex regulates transcription of its target genes. 
These are for example players in the regulation of prolifera-
tion, tissue development and architecture as well as angio-
genesis [161]. 
 In a recent paper, Xiong et al. hypothesized a link be-
tween estrogen and β-catenin in the pathogenesis of endome-
triosis. They showed that estradiol (E2) treatment of human 
endometrial stromal cells (HESC) from patients with endo-
metriosis enhances the level of β -catenin, its nuclear local-
ization as well as the cells’ invasiveness. Downregulation of 
β-catenin in HESCs decreases invasiveness. Along these 
lines, implantation of human endometrium into the pelvic 
cavity of immune-compromised NOD-SCID mice under E2 
injection led to upregulation of vascular vascular endothelial 
growth factor (VEGF) and MMP-9 as well as the formation 
of adhesive and invasive endometriotic lesions. Downregula-
tion of β-catenin prevented such lesions and repressed VEGF 
and MMP-9 expression. These data imply that E2 might ac-
celerate disease progression by upregulating β -catenin and 
thus it target genes possibly under conditions of abnormal 
estrogen levels [163]. 
 In a another report, Zang et al. addressed the question 
whether the neovascularization of endometriotic lesions as 
one important step of lesion survival is enhanced by upregu-
lation of VEGF through E2 [164]. The authors present an 
interesting set of data indicating how VEGF, E2 and canoni-

cal WNT signal transduction depend on each other mecha-
nistically in the pathogenesis of endometriosis. E2 first en-
hances the level of β-catenin protein possibly through bind-
ing of the estrogen receptor α (ERα) to ERE sites in the β -
catenin promoter thereby stimulating its transcription. Sub-
sequently, nuclear β -catenin/TCF-LEF complexes target to 
the TCF-LEF binding sites in the VEGF gene promotor fi-
nally enhancing the expression of VEGF mRNA. 
 The results and conclusions as presented [164] are sup-
ported by a paper published by de Mattos et al. studying 
components of the WNT/β-catenin pathway in a rat model of 
peritoneal endometriosis [165]. In summary, these results 
imply effects on cell proliferation and angiogenesis by acti-
vation of the WNT pathway. More in detail, they identified 
decreased levels of GSK3β and E-cadherin as well as a 
higher amount of nuclear β-catenin in endometriotic lesions 
when compared to uterine endometrial tissue. Such data are 
consistent with the idea that a decrease in GSK3β leads to 
stabilization of β -catenin, which then exhibits elevated ex-
pression and presence in the nucleus. This in turn should 
lead to enhanced expression of β -catenin target genes of 
which VEGF is required for angiogenesis. Why endometri-
otic lesions exhibit a decrease in E-cadherin mRNA as com-
pared to endometrial tissue is not clear. A rather trivial ex-
planation for this observation is that ectopic endometrium 
contains more stromal than epithelial cells. Nevertheless, E-
cadherin appears dysregulated in a number of cells of ectopic 
lesions as shown by our group and others [72, 126, 127]. 
Complete or partial EMT taking place in the lesions might be 
the responsible mechanism resulting in the downregulation 
of E-cadherin. This would alter the molecular composition 
and thus functional features of the epithelial cells in the ec-
topic endometrial lesions. 
 de Mattos et al. also found that elevated levels of WNT4 
and WNT7b in the ectopic lesions [165]. This is in agree-
ment with previous reports by Gaetje et al. showing in-
creased WNT4 and WNT7a levels in human endometriotic 
lesions [65, 166]. Despite the fact that these WNT ligands 
are obviously important for the normal development of en-
dometrium, it seems hitherto difficult to find a coherent ex-
planation for their role in the establishment and/or mainte-
nance of endometriosis. Since WNT ligands such as WNT4 
act as regulators of cell proliferation and differentiation, it 
appears however likely that they influence such processes 
also in pathophysiological events like endometriosis or tu-
mor development. 
 Based on the reports referred to above it might be antici-
pated that inhibition of the WNT/β-catenin pathway reduces 
for example cell migration, invasion and matrix metallopro-
teinase expression (necessary for invasion). Such cell fea-
tures are prerequisites to develop and possibly maintain en-
dometriotic lesions. Indeed, Matsuzaki and Darcha showed 
inhibitory effects of the small molecule PKF 115-584 on cell 
migration and invasion in epithelial and stromal cells in vitro 
from patients with endometriosis prepared at the menstrual 
phase [167]. This inhibition of TCF-LEF/β-catenin-mediated 
effects and therefore target gene expression was weaker in 
epithelial and stromal cells from patients without endometri-
osis than from patients with endometriosis. 
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 Taken together, the current knowledge of the WNT/β-
catenin pathway in endometriosis favors the idea that it 
might be a remunerative target for the development of novel 
therapeutics. This is in line with a recent report describing 
screenings of naturally derived WNT signal modulators an-
ticipated to bind to and affect mainly β -catenin activity in 
pathophysiological but not physiological conditions [168]. 

CONCLUSION 

 The molecular hallmarks of endometriosis comprise a 
hormone-dependent (estrogen-dependence, progesterone 
resistance) and inflammatory condition with a (epi)genetic 
predisposition driven most likely by cells with plasticity. 
Newly discovered biological concepts of general relevance 
(e.g. exosomes and miRNAs) are also relevant for the patho-
genesis of endometriosis. Intercellular communication medi-
ated by exosomes could be viewed as a novel mechanistic 
tool to orchestrate cell fate by e.g. modulating signaling 
pathways. A challenge in endometriosis research will be the 
assessment of non-steroid signaling pathways as targets for 
novel therapeutics to treat endometriosis. This might be a 
chance to replace E2-depletion therapies to minimize adverse 
side effects such as early menopause. 
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