

Contents lists available at ScienceDirect

European Journal of Obstetrics & Gynecology and Reproductive Biology

journal homepage: www.elsevier.com/locate/ejogrb

Review article

The limited oncogenic potential of unilocular adnexal cysts: A systematic review and meta-analysis

Fabio Parazzini^{a,c,*}, Maria Pina Frattaruolo^b, Francesca Chiaffarino^a, Dhouha Dridi^{b,c}, Elena Roncella^{b,c}, Paolo Vercellini^{b,c}

- ^a Department of Woman, Newborn and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Via Commenda, 12, 20122, Milan, Italy
- Department of Gynecological Surgery and Endometriosis, IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via Commenda, 12, 20122 Milan, Italy

ARTICLE INFO

Article history: Received 3 February 2018 Received in revised form 12 April 2018 Accepted 13 April 2018 Available online xxx

Keywords: Unilocular ovarian cysts Malignancy risk Anechoic unilocular cysts Postmenopausal

ABSTRACT

The reported frequency of malignant diseases in unilocular cysts varies in different studies, giving conflicting results. To quantify the risk of malignancies among echoic and anechoic unilocular adnexal cysts, in premenopausal and postmenopausal women, we performed a PubMed/MEDLINE search of papers published in English evaluating the histopathological diagnoses of removed ovarian cysts diagnosed as simple unilocular cysts at pre-operative ultrasound examination, From 34 selected publications, we extracted data on ovarian malignancy in the total series, and separately for premenopausal and postmenopausal women, and women with cysts $< 5 \, \text{cm}$ and $\ge 5 \, \text{cm}$ in diameter. Of the 2177 surgically removed lesions classified as unilocular cysts on pre-operative ultrasound, 24 (1.1%; 95% CI: 0.74-1.66) were malignant (among these 12 had borderline malignancy: 0.6%). The rates were lower for premenopausal women (6/987, 0.6%) than postmenopausal ones (12/372, 3.2%). Of the 2290 surgically removed lesions classified as anechoic unilocular cysts on ultrasound, 20 (0.9%; 95% CI: 0.57–1.35) were malignant (among these 8 had borderline malignancy: 0.3%). The rates were lower for premenopausal women (3/907, 0.3%) than postmenopausal ones (13/681, 1.9%) (Pearson chi-square P = 0.002). When we performed meta-analysis selecting studies including only anechoic unilocular cysts published after 2000 and with 100 or more patients, the estimate was 0.5 (95% CI 0.1-1.2) with no heterogeneity (heterogeneity chi-square P = 0.175).

The oncogenic risk of unilocular adnexal cysts is low, suggesting that the final choice about surgical treatment of these cysts should be based on the combination of each patient's overall risk profile as well as personal priorities.

© 2018 Elsevier B.V. All rights reserved.

Contents

roduction	
ethods	02
sults	02
scussion	
nclusion	08
sclosure of interests	
ntribution to authorship	08
nding	08
ferences 1	08

E-mail address: fabio.parazzini@unimi.it (F. Parazzini).

^c Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy

^{*} Corresponding author at: Department of Woman, Newborn and Child, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Via Commenda, 12, 20122, Milan, Italy.

Introduction

Ovarian cysts are a common condition. Worldwide, about 7% of women have an ovarian cyst at some point in their lives [1]. In a large American cohort study the incidence of new simple cysts was 8% per year [2], whereas the incidence of ovarian cysts in the menopausal population is likely between 3% and 18% [3]. In case of diagnosis of ovarian cysts, surgical procedure is common. In most cases the indications to surgery include also worries about malignancies. In expert hands approximately 10–25 surgeries will be performed for each malignancy identified. This number may be even higher if simple cystic masses, which represent about 30% of ovarian cysts, are not followed expectantly [4]. In fact, the risk of a unilocular ovarian cyst being malignant is considered very low and it has been suggested that unilocular cysts <5 cm in diameter in postmenopausal women require no intervention other than possibly follow-up scans [4–7].

Along this line, the American College of Obstetricians and Gynecologists (ACOG) stated that simple cysts found on ultrasound may be safely followed without intervention, even in postmenopausal women; however most of them are nowadays removed. Part of these procedures are due to the uncertainties about the risk of malignancies.

In order to review the available evidences on the risk of malignancies among echoic and anechoic unilocular adnexal cysts, both in premenopausal women and in postmenopausal women, we conducted a systematic review and a meta-analysis.

Methods

This review and meta-analysis was restricted to published research articles that evaluated the histopathological diagnoses of ovarian lesions, described as unilocular cysts at pre-operative ultrasound examination.

We performed a PubMed/MEDLINE search of papers published between January 1990 — February 2017, using the terms "unilocular ovarian cysts" or "simple ovarian cysts" combined with "ovarian cancer" or "surgery" or "transvaginal ultrasound", or "histology". Only studies published as full-length in English and reporting original data were included. Moreover, bibliographies of the retrieved papers were reviewed, to identify other relevant studies.

The present review and meta-analysis were conducted according to the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) and MOOSE guidelines [8,9].

All published studies evaluating the histopathological diagnoses of removed ovarian lesions, described as simple unilocular cysts at pre-operative ultrasound examination, were included, without any specific restriction regarding the type of echogenicity of cyst fluid and the age of women. The presence or the appearance at pre-operative ultrasound examination of septations, or solid area or papillary projection, or pathological colour doppler analysis or bilateral cysts were exclusion criteria.

Three authors (M.P.F., E.R. and D.D.) conducted an independent screening of all titles and abstracts retrieved from peer-reviewed journals to exclude irrelevant or duplicate citations. Disagreements were resolved by discussion. Data presented exclusively as abstracts in national and international meetings, or case report or review articles that did not include original data were excluded. When we found more than one publication based on the same study population and data, we included only the more recent paper or with the most detailed information.

From each publication we extracted the following information: author, year of publication, study design, number of patients enrolled, age of participants, menopausal status, size of unilocular ovarian lesions (<5 cm or \ge 5 cm), echogenicity of cyst fluid at pre-operative ultrasound examination, and histopathological diagnoses of removed adnexal cysts.

The methodological quality of selected studies was assessed using the Methodological Index for Non-Randomised Studies

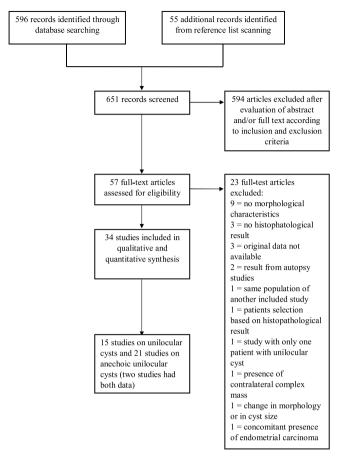


Fig. 1. Flowchart of the study selection process.

(MINORS), a validated instrument which is designed for assessment of methodological quality of non-randomized studies in surgery [10]. Briefly, the studies were judged on eight pre-defined items and the maximum score was 16.

The primary outcomes assessed were ovarian malignancy in the total series, separately for premenopausal and postmenopausal women, and for women with cysts <5 cm and ≥5 cm in diameters. For each study with binary outcomes, we calculated the 95% confidence intervals (CI) of the estimated proportion. To evaluate the association between ovarian malignancy and menopausal status or cyst diameter, we computed Pearson Chi Square test for heterogeneity and relative P value.

Taking into account the strong improvement that modern ultrasound has had in technical quality and interpretation, we performed a sub-analysis, considering studies published during the 2000 or before and studies published after 2000.

Moreover, to perform meta-analysis of these proportions, we selected only the studies with 100 or more patients and published after 2000 in order to obtain more consistent data. We used Metaprop, a command implemented in Stata to compute meta-analysis of proportions [11]. Freeman-Tukey method was applied to include, in the computation, the studies with outcome proportion equal zero [12]. Estimates of proportion and 95% CI were calculated by using random effect model. To evaluate heterogeneity among studies, heterogeneity chi square value was also reported.

Results

Fig. 1 shows the flow diagram of the literature search results. A total of 596 articles were identified by database search as potentially relevant and another 55 citations were found from

E. Parazzini et al./European Journal of Obstetrics & Gynecology and Reproductive Biology 225 (2018) 101-109

Table 1Characteristics of the selected studies with unilocular cyst. Literature data, Jan 1990–Feb 2017.

Source, year	Year of recruitment	Country	Type study	of Clinical criteria		No. of patients enrolled	No. of p unilocul operated	ar cyst	Range age (y)		vith	Cyst diameter (range, mm)	Valuated CA125 level	Quality of evidence
Granberg et al. 1990 [35]	, 1987–1988	Sweden	PCS	The tumor was classified as uni unilocular solid, multilocular, mu or solid.	,	180 lid	45		NR	No		NR	No	12
Parker et al., 1994 [36]	NR	Multicentre (USA)	PCS	The criteria for presumptively b mass were: cystic masses greate less than 10 cm, with distinct be solid parts or septations greater without ascites or matted bowe serum CA 125 levels less than 3	r than 3 cm borders, without than 2 mm, el, and with	out out	61		47-81	Yes		30–100	Yes	8
Valentin et al., 1994 [37]	, NR	Sweden	PCS	Unilocular cyst (a unilocular cyst and without solid parts or papil excrescences)		ota 149	41		18-84	Yes		NR	No	12
Auslender et al., 1996 [38]	1987–1993	Israel	PCS	Cyst with the following charact diameter less than 5 cm, smootl hypoechogenic, aseptate, no sol absence of ascites or any other	h-walled, id content, a	nd	9		43-85	Yes		15–50	Yes	12
Valentin, 1997 [39]	NR	Sweden	PCS	Unilocular cyst (a unilocular cyst and without solid parts or papil excrescences)	t without sep		33		20-90	No		NR	No	12
Bailey et al., 1998 [40]	1987–1995	USA	PCS	The morphology index scores of cystic tumors ranged from 0 to			45		50-90	Yes		0-100	Yes	13
Hata et al., 1998 [41]	NR	Japan	PCS	Unilocular cyst is a unilocular c septa and without solid parts of structures	yst without	171	20		11-82	No		NR	No	12
Reimer et al., 1999 * [42]	NR	Germany	PCS	Unilocular, some echoes		58	27		48-83	Yes		NR	Yes	10
Bayar et al., 2005 [48]	NR	Turkey	RCT	Simple cyst is a unilocular cyst, between 3 and 10 cm, with and internal echoes and benign on I velocity	without		28		< 50	Yes		NR	Yes	12
Source, year	Year of recruitment	Country	Type of study	Clinical criteria	1	No. of patients with unilocular cyst operated		Indicated MP sta for patients with unilocular cyst	h	Cyst diameter (range, mm)	Unilocular cyst diameter < 50 mm	Unilocular cys diameter ≥ 50		d Quality of evidence
Exacoustos et al., 2005 [46]	1997-2003	Italy		Unilocular cyst is a smooth-walled unilocular cyst with clear fluid or dense (echogenic) fluid content	452	227	12-82	No		20-165	NR	NR	No	10
Timmerman et al. 2005 [43]	NR	Multicentre (Europe)		Unilocular cyst: a unilocular cyst without septa and without solid parts or papillary structures	1066	313	17-94	No		11-410	NR	NR	Yes	13
	NR	Sweden	PCS	Unilocular cyst is a unilocular cyst without septa and without solid parts or papillary structures	106	22	NR	No		NR	NR	NR	No	13
	2004-2006	Italy	RCS	Unilocular cyst is a unilocular cyst without septa and without solid parts or papillary structures	105	35	18-83	No		13-200	NR	NR	Yes	12
	2001-2008	USA	PCS	Tumor morphology was classified as cystic []. All tumors classified as cystic were unilocular.	395	123	10-86	No		NR	NR	NR	Yes	12

Table 1 (Continued)	inued)												14
Source, year	Year of recruitment	Country	Type of study	Source, year Year of Country Type Clinical criteria of recruitment of study	No. of patients enrolled	No. of No. of patients patients with unilocular enrolled cyst operated	Range age (y)	Range Indicated MP status Cyst age (y) for patients with diameter unilocular cyst (range, mm)	Cyst diameter (range, mm)	Unilocular cyst diameter < 50 mm	Unilocular Unilocular cyst Valuated Quality of cyst diameter diameter > 50 mm CA125 evidence < 50 mm	Valuated CA125 Ievel	Quality of evidence
Valentin et al. 2013° [7]	1999–2007	Multicentre (Europe)	RCS	Valentin 1999–2007 Multicentre RCS Unilocular cyst is a cyst with one et al. 2013 (Europe) cyst locule, no solid components and no papillary projections and mith a contents of any type of socknown c	1148	1148	15–90 Yes	Yes	8–340 NR	NR	NR	Yes	13

Values are numbers. Quality of evidence is scored according to the MINORS criteria (Slim et al., 2003). "Those studies are included also in Table S3 (for anechoic unilocular cyst analysis).

= menopausal; NR = not reported; PCS = prospective cohort study; RCT = randomized controlled trial; RCS = retrospective cohort study.

of reference lists. A total of 594 articles were excluded after evaluation of abstract and/or full text because they did not satisfy the inclusion criteria and 57 articles were assessed for eligibility. Overall, 23 publications were not included in the current review and meta-analysis [4,13-34].

Table 1 reports the characteristics of 15 selected studies considering unilocular cysts independently of the echogenicity. A total of 14 studies had a cohort design, most of these was prospective [35–45], three were retrospective [7,46,47], and one was a randomized clinical trial [48].

The number of patients enrolled ranged from 51 to 1148. Four studies were conducted in Sweden, three in USA, two in Italy, two studies were multicountry European studies, one was conducted in Israel, one in Turkey, one in Germany and one in Japan. According to the MINORS criteria, the quality of considered studies was generally good: the score ranged from 8 to 13 being 12 or 13 in 12 papers out of 15.

The definition of unilocular cyst was not uniform. A total of eight studies didn't report the cyst's diameter. Only seven studies reported the menopausal status.

Table 2 reports the characteristics of studies including anechoic unilocular cysts. 21 studies were selected. Two studies were also included in Table 1 because they had also data of unilocular cysts with different echogenicity [7,42]. Five studies were conducted in the USA, three in Israel, two in Germany, two studies were multicountry European studies, one was conducted in Sweden, one in China, one in Japan, one in Austria, one in the United Kingdom, one in Spain, one in the Netherlands, one in New Zealand and one in Turkey. 12 were prospective [4.42.49–58]. 7 retrospectives [7.59–64] cohort studies, and two were clinical case series [65.66]. The number of patients considered ranged from 29 to 2763. A total of 16 studies reported the menopausal status of patients 11 studies didn't report cysts size.

Table 3 considers the studies including unilocular cysts without any specific restriction regarding the type of echogenicity of cyst fluid. In the studies published before 2000, the number of included women was low and the malignancy rate was 0 except for Reimer et al. [42]. The rate of malignancy among the studies published from 2000 was 0.9%. Overall of the 2177 surgically removed lesions classified as unilocular cysts on ultrasound, 24 (1.1%; 95% CI: 0.74 – 1.66) were malignant (among these 12 were of borderline malignancy: 0.6%). When we performed the meta-analysis selecting studies published after 2000 and with 100 or more patients, the random pooled estimate was 0.8 (95% CI: 0.4-1.3) with no heterogeneity among studies (heterogeneity chi square = 2.12 P = 0.55) [7,43–46].

The rate was lower for premenopausal women (6/987, 0.6%) than postmenopausal ones (12/372, 3.2%) and the difference was statistically significant (Pearson chi-square P = 0.0002). Similar results we obtained analyzing studies published after 2000: the malignancy rate was 0.6% for premenopausal women (two studies [7,48]) and 2.8% for menopausal women (only one study [[7,48]]) and the difference was statistically significant (Pearson chi-square P = 0.005). Likewise, the rates were lower in cysts with diameter < 5 cm (5/524, 1.0%) than > 5 cm (12/705, 1.7%) but this differencewas not statistically significant (Pearson chi square P = 0.268). Among studies published after 2000, we identified one study [7] including a large number of women: the malignancy rate in women with cysts with diameter <5 cm was 0.8% and in cysts with diameter ≥ 5 cm was 1.1%.

Table 4 considers the studies including only anechoic unilocular cysts. The rate of malignancies ranged from 0 to 6.3%. Overall of the 2290 surgically removed lesions, classified as anechoic unilocular cysts on ultrasound, 20 (0.9%; 95% CI: 0.57-1.35) were malignant (among these 8 were of borderline malignancy: 0.3%). When we performed the meta-analysis selecting studies published after

F. Parazzini et al./European Journal of Obstetrics & Gynecology and Reproductive Biology 225 (2018) 101–109

105

 Table 2

 Characteristics of the selected studies with anechoic unilocular cyst. Literature data, Jan 1990–Feb 2017.

Source, year	Year of recruitmen	Country	Type o	of Clinical criteria	No. o patie enrol	nts anechoic			/) p	ndicated MP : patients with inilocular cys	anechoic	Cyst diameter (range, mm)	Valuated CA125 leve		Quality of evidence
Schoenfeld et al. 1990 [65]	, NR	Israel	CCS	Unilateral simple cysts with no separations or solid components	29	29		50-76	5 Y	⁄es		NR	No	8	3
Luxman et al., 1991 [49]	1987–1989	Israel	PCS	A lesion that appeared to be unilocula and clear and lacking papillae or sept was defined as "simple"		33		42-90) Y	⁄es		NR	No	1	1
Obwegeser et al. 1993 [59]	, 1987–1990	Austria	RCS	Completly anechogenic; no septae; no papillae or other even small echogeni areas; no thickening of cyst wall		144		18–81	Y	⁄es		40-250	No	8	1
Jain, 1994 [50]	NR	USA	PCS	Sonographic criteria for simple cysts included an anechoic cystic mass with well-defined thin wall and no interna echoes, septations, or mural nodules		15		22-55	5 N	No		17–55	No	1	1
Shalev et al., 1994 [51]	1988–1993	Israel	PCS	Simple cyst (clear cyst with smooth borders)	130	43		> 47	Y	les .		20–150	Yes	1	1
Kroon and Andolf, 1995 [60]	1983–1992	Sweden	RCS	Completely anechoic, small (less than 50 mm) ovarian cysts	83	43		48-85	5 Y	⁄es		9–50	No	1	1
Yamashita et al. 1995 [52]	, NR	Japan	PCS	At TVUS, a diagnosis of simple cyst wa made when an anechoic cystic mass had a well-delineated wall and no internal echoes, septa, or mural nodules.	s 400	52		13-74	ł N	No		NR	No	1	2
Gerber et al., 1997 [61]	1990–1996	Germany	RCS	Simple ovarian cysts: unilocular, anechoic smooth-walled cystic ovaria tumors and contained no septa or soli areas.		140		13–56	5 Y	⁄es		NR	No	9)
Conwey et al., 1998 [53]	1990–1994	USA	PCS	A simple ovarian cyst was defined as being less than 5 cm in the sigle larges diameter, anechoic, and unilocular wit regular borders, with no papillary projections.	t	14		> 40	Y	⁄es		NR	Yes	1	2
Reimer et al., 1999 *[42]	NR	Germany	PCS	Simple cyst (anechoic, smooth-walled unilocular)	, 58	16		48-83	3 Y	es!		NR	Yes	1	0
	ar of Co cruitment		Type of study	F	lo. of atients nrolled	No. of patients with anechoic unilocular cyst operated	_	Indicated MP s for patients wi anechoic unilo cyst	th	diameter	Anechoic unilocular cyst diameter < 50 mm	Anechoic unilocular cy: r diameter ≥ 50			Quality of evidence
Ekerhovd 19 et al., 2001 [54]		weden and ustria	:	Cysts were characterized either as 1 single cyst, echo-free, without solid parts or papillary formations	304	660	14-90	Yes		18-200	NR	NR	No		11
	87–2002 US	SA	PCS		763	106	> 50	Yes		< 100	NR	NR	No		13
Nardo et al., 19 2003 [62]		nited Ingdom	RCS	Only unilocular, echo-free, thin-walled 2 cysts measuring less than 50 mm in diameter and without solid parts or papillary formations were considered in the study	26	138	45-87	Yes		18-80	84	54	Yes		10

Table 2 (Continued)

Source, year	Year of recruitment	Country	Type of study	Clinical criteria	No. of patients enrolled	No. of patients with anechoic unilocular cyst operated	Range age (y)	Indicated MP status for patients with anechoic unilocular cyst	Cyst diameter (range, mm)	Anechoic unilocular cyst diameter < 50 mm	Anechoic unilocular cyst diameter ≥ 50 mm	Valuated CA125 level	Quality of evidence
Ueland et al. 2003 [66]	1987–2000	USA	CCS	Structural score 0: smooth-wall, sonolucent	442	144	18-85	No	NR	NR	NR	No	11
(iaoman et al., 2003 [55]	1994–2001	China	PCS	Simple anechoic cysts	221	221	14-74	Yes	NR	76	145	Yes	12
Castillo et al., 2004 [56]	1995–2002	Spain	PCS	A simple unilocular adnexal cyst was defined as a sonolucent thin-walled (<3 mm) structure without any septation or solid area or papillary projections arising from both internal or external wall surface	215	45	45-84	Yes	9-94	NR	NR	Yes	14
e Kroon et al., 2004 [57]	1992–2002	Netherlands	PCS	Simple cyst	406	98	7–88	No	NR	NR	NR	No	12
Simcock and Anderson,	1994–1997 2005 [63]	New Zealand	RCS	A simple ovarian cyst was defined as unilateral or bilateral, thin-walled, anechoic, non-septated, well-defined structure in the absence of ascites	90	59	15-84	Yes	36–180	NR	NR	No	11
Sarkar and Wolf, 2012 [64]	1997-2010	USA	RCS	Simple cyst of ovary was defined as an echo-free cyst with a smooth lining and no septae or solid areas or papillary projections within the cyst cavity.	314	3	35-96	Yes	NR	NR	NR	No	12
Valentin et al. 2013 [*] [7]	1999–2007	Multicentre (Europe)	RCS	Unilocular cyst is a cyst with one cyst locule, no solid components and no papillary projections and anechoic.	1148	326	15-90	Yes	8-340	NR	NR	Yes	13
Bayoglu Tekin and Dede, 2014 [58]	2006–2007	Turkey	PCS		221	59	18-73	No	NR	NR	NR	Yes	12

Values are numbers. Quality of evidence is scored according to the MINORS criteria (Slim et al., 2003).

^{*}Those studies are included also in Table S2 (for unilocular cyst analysis).

MP = menopausal; NR = not reported; PCS = prospective cohort study; RCS = retrospective cohort study; CCS = Clinical case series

Table 3 Studies including unilocular cysts.

Studies including unnocular cysts.		
Source, year	Malignancies	% Malignancies
	(borderline)/total	(95% CI)
All studies		
Granberg et al., 1990 [35]	0/45	0.0
Parker et al., 1994 [36]	0/61	0.0
Valentin et al., 1994 [37]	0/41	0.0
Auslender et al., 1996 [38]	0/9	0.0
Valentin, 1997 [39]	0/33	0.0
Bailey et al., 1998 [40]	0/45	0.0
Hata et al., 1998 [41]	0/20	0.0
Reimer et al., 1999 [42]	6/27	22.2 (10.6–40.7)
Total papers published before 2000	6/281	2.1 (1.0–4.6)
Bayar et al., 2005 [48]	1 (1)/28	3.6 (0.6–17.7)
Exacoustos et al., 2005 [46]	3 (3)/227	1.3 (0.5–3.8)
Timmerman et al. 2005 [43]	2 (2)/313	0.6 (0.2–2.3)
Jokubkiene <i>et al.</i> , 2007 [44]	0/22	0.0
Gramellini et al., 2008 [47]	1 (1)/35	2.8 (0.5–14.5)
McDonald et al., 2010 [45]	0/123	0.0
Valentin et al. 2013 [7]	11 (5)/1148	0.9 (0.5–1.7)
Total papers published after 2000	18/1896	0.9 (0.6–1.5)
Total	24 (12)/2177	1.1 (0.74–1.66)
Premenopausal women only	24 (12) 2177	1.1 (0.74–1.00)
Valentin et al., 1994 [37]	0/28	0.0
Total papers published before 2000	0/28	0.0
Bayar et al., 2005 [48]	1 (1)/28	3.6 (0.6–17.7)
Valentin <i>et al.</i> , 2013 [7]	5 (4)/931	0.5 (0.2–1.3)
Total papers published after 2000	6/959	0.6 (0.3–1.4)
Total	6 (5)/987	0.6 (0.28–1.32)
Postmenopausal women only	0 (0)/007	0.0 (0.20 1.02)
Auslender et al., 1996 [38]	0/9	0.0
Bailey et al., 1998 [40]	0/45	0.0
Parker et al., 1994 [36]	0/61	0.0
Reimer et al., 1999 [42]	6/27	22.2 (10.6–40.8)
Valentin <i>et al.</i> , 1994 [37]	0/13	0.0
Total papers published before 2000	6/155	3.9 (1.8–8.2)
Valentin et al. 2013 [7]	6 (1)/217	2.8 (1.3-5.9)
Total	12 (1)/372	3.2 (1.86–5.55)
Cysts <5 cm in diameter	1- (1) 01-	3.2 (1.00 blob)
Granberg et al., 1990 [35]	0/19	0.0
Auslender et al., 1996 [38]	0/9	0.0
Reimer et al., 1999 [42]	1/10	10.0 (1.8-40.4)
Total papers published before 2000	1/38	2.6 (0.5–13.5)
Valentin et al. 2013 [7]	4 (1)/486	0.8 (0.3–2.1)
Total	5 (1)/524	1.0 (0.41–2.21)
Cysts ≥5 cm in diameter	0 (1//021	110 (0111 =1=1)
Granberg et al., 1990 [35]	0/26	0.0
Reimer et al., 1999 [42]	5/17	29.4 (13.3–53.1)
Total papers published before 2000	5/ 4 3	11.6 (5.1-24.5)
Valentin et al. 2013 [7]	7 (4)/662	1.1 (0.5–2.2)
Total	12 (4)/705	1.7 (0.98–2.95)
	(-//- 30	(0.03 2.00)

The bold value indicates a total data.

2000 and with 100 or more patients, the estimate was 0.5 (95% CI 0.1-1.2) with no heterogeneity (heterogeneity chi-square P = 0.175) [4,7,54,55,62,66].

The rates were lower among premenopausal women (3/907, 0.3%) than postmenopausal ones (13/681, 1.9%) (Pearson chi-square P = 0.002). When we considered the studies published after 2000, the malignancy rate in anechoic cysts tended to be lower among premenopausal women (3/657, 0.5%) than postmenopausal ones (7/469, 1.5%) but the difference was not statistically significant (Pearson chi-square P = 0.07). Considering all published studies, the malignancy rates were similar in cases with cysts <5 cm (2/302, 0.7%) or \ge 5 cm (3/303, 1.0%) in diameter (Pearson chi square P = 0.656).

Discussion

The general result of this systematic review shows that the oncogenic risk of unilocular adnexal cysts is about 1%, including

Table 4 Studies including anechoic unilocular cysts.

All studies Schoenfeld et al., 1990 [65] Luxman et al., 1991 [49] Obwegeser et al., 1993 [59] Jain, 1994 [50] Shalev et al., 1994 [51] Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [66] Ueland et al. 2003 [66] Siaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total Premenopausal women only	Malignancies borderline)/total 0/29 2 (0)/33 8 (1)/144)/15 0/43 0/43 0/43 0/43 0/140 0/14 (1)/16 6/5/29 7 (3)/660 0/106 2 (0)/138 0/144 0/221 (0)/45 0/59 0/3 4 (3)/326 0/59	% Malignancies (95% CI) 0.0 6.1 (0.1–9.6) 2.1 (0.7–5.9) 0.0 0.0 0.0 0.0 0.0 6.3 (1.1–28.3) 1.1 (0.5–2.5) 1.1 (0.5–2.2) 0.0 1.4 (0.4–5.1) 0.0 0.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
All studies Schoenfeld et al., 1990 [65] 0 Luxman et al., 1991 [49] 2 Obwegeser et al., 1993 [59] 3 Jain, 1994 [50] 0 Shalev et al., 1994 [51] 0 Kroon and Andolf, 1995 [60] 0 Yamashita et al., 1995 [52] 0 Gerber et al., 1997 [61] 0 Conwey et al., 1998 [53] 0 Reimer et al., 1998 [53] 1 Reimer et al., 1999 [42] 1 Total papers published before 2000 6 Ekerhovd et al., 2001 [54] 7 Modesitt et al., 2001 [54] 0 Nardo et al., 2003 [62] 2 Ueland et al. 2003 [66] 0 Xiaoman et al., 2003 [55] 0 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 1 Total 2 Premenopausal women only	0/29 2 (0)/33 8 (1)/144 1/15 0/43 0/43 0/43 0/152 0/14 0 (1)/16 6/529 7 (3)/660 0/106 2 (0)/138 0/144 0/221 0 (0)/45 0/3 4 (3)/326 0/59	0.0 6.1 (0.1–9.6) 2.1 (0.7–5.9) 0.0 0.0 0.0 0.0 0.0 0.0 6.3 (1.1–28.3) 1.1 (0.5–2.5) 1.1 (0.5–2.2) 0.0 1.4 (0.4–5.1) 0.0 0.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
Schoenfeld et al., 1990 [65] Luxman et al., 1991 [49] Obwegeser et al., 1993 [59] Jain, 1994 [50] Shalev et al., 1994 [51] Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [62] Ueland et al. 2003 [66] Xiaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total Premenopausal women only	2 (0)/33 8 (1)/144 1/15 0/43 0/43 0/143 0/140 0/140 0/140 0/141 0/1660 0/106 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/109 0/	6.1 (0.1-9.6) 2.1 (0.7-5.9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Luxman et al., 1991 [49] 2 Obwegeser et al., 1993 [59] 3 Jain, 1994 [50] 0 Shalev et al., 1994 [51] 0 Kroon and Andolf, 1995 [60] 0 Yamashita et al., 1995 [52] 0 Gerber et al., 1997 [61] 0 Conwey et al., 1998 [53] 0 Reimer et al., 1998 [42] 1 Total papers published before 2000 Ekerhovd et al., 2001 [54] 7 Modesitt et al., 2003 [4] 0 Nardo et al., 2003 [62] 2 Ueland et al. 2003 [66] 0 Xiaoman et al., 2003 [55] 0 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 3 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 1 Total 2 Premenopausal women only	2 (0)/33 8 (1)/144 1/15 0/43 0/43 0/143 0/140 0/140 0/140 0/141 0/1660 0/106 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/1060 0/107 0/109 0/	6.1 (0.1-9.6) 2.1 (0.7-5.9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Obwegeser et al., 1993 [59] Jain, 1994 [50] Shalev et al., 1994 [51] Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [64] Nardo et al., 2003 [65] Viaoman et al., 2003 [65] Xiaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total papers published after 2000 Total Premenopausal women only	3 (1)/144 3 (1)/15 1)/43 1)/43 1)/52 1)/140 1)/14 1 (1)/16 3/529 7 (3)/660 1)/106 2 (0)/138 1)/144 1)/221 1 (0)/45 1)/59 1)/3 1 (3)/326 1)/59 14/1761	2.1 (0.7-5.9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Jain, 1994 [50] Shalev et al., 1994 [51] Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [64] Nardo et al., 2003 [66] Viaoman et al., 2003 [65] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total papers published after 2000 Total Premenopausal women only	0/15 1/43 1/43 1/43 1/43 1/40 1/14 1/17/16 1/1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Shalev et al., 1994 [51] Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [62] Ueland et al. 2003 [66] Xiaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total Premenopausal women only)/43)/43)/43)/52)/140)/140)/14 ((1)/16 5/529 (7(3)/660)/106 (2 (0)/138)/144)/221 ((0)/45)/59)/3 4 (3)/326)/59	0.0 0.0 0.0 0.0 0.0 6.3 (1.1–28.3) 1.1 (0.5–2.5) 1.1 (0.5–2.2) 0.0 1.4 (0.4–5.1) 0.0 0.2 (0.4–11.6) 0.0 0.1 (0.5–2.3)
Kroon and Andolf, 1995 [60] Yamashita et al., 1995 [52] Gerber et al., 1997 [61] Conwey et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [62] Ueland et al., 2003 [65] Castillo et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total Premenopausal women only)/43)/52)/140)/14 (1)/16 (3)/660)/106 (2 (0)/138)/144)/221 ((0)/45)/59)/3 ((3)/326)/59	0.0 0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Yamashita et al., 1995 [52] 00 Gerber et al., 1997 [61] 00 Conwey et al., 1998 [53] 00 Reimer et al., 1999 [42] 17 Total papers published before 2000 Ekerhovd et al., 2001 [54] 77 Modesitt et al., 2003 [4] 90 Nardo et al., 2003 [62] 90 Ueland et al., 2003 [66] 90 Xiaoman et al., 2003 [55] 90 Castillo et al., 2004 [56] 91 Simcock and Anderson, 2005 [63] 92 Sarkar and Wolf, 2012 [64] 93 Valentin et al., 2013 [7] 93 Bayoglu Tekin and Dede, 2014 [58] 91 Total 92 Premenopausal women only)/52)/140)/14 (1)/16 6/529 7 (3)/660)/106 2 (0)/138)/144)/221 ((0)/45)/59)/3 4 (3)/326)/59	0.0 0.0 0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Gerber et al., 1997 [61] 00 Conwey et al., 1998 [53] 01 Reimer et al., 1998 [42] 11 Total papers published before 2000 Ekerhovd et al., 2001 [54] 77 Modesitt et al., 2003 [4] 10 Nardo et al., 2003 [62] 22 Ueland et al., 2003 [66] 21 Xiaoman et al., 2003 [55] 22 Castillo et al., 2004 [56] 31 Sarkar and Wolf, 2012 [64] 41 Valentin et al., 2013 [7] 42 Bayoglu Tekin and Dede, 2014 [58] 21 Total 21 Premenopausal women only	1)/140 1)/14 1)/14 1)/16 1)/16 1)/106 1)/106 1)/106 1)/138 1)/144 1)/221 1)/19 1)	0.0 0.0 6.3 (1.1–28.3) 1.1 (0.5–2.5) 1.1 (0.5–2.2) 0.0 1.4 (0.4–5.1) 0.0 0.0 2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
Conwey et al., 1998 [53] Reimer et al., 1998 [53] Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [66] Viaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total papers published after 2000 Total Premenopausal women only	0/14 (1)/16 5/529 7 (3)/660 0/106 2 (0)/138 0/144 0/221 ((0)/45 0/59 0/3 4 (3)/326 1/59	0.0 6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1)
Reimer et al., 1999 [42] Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [62] Ueland et al. 2003 [65] Xiaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total papers published after 2000 Total Premenopausal women only	(1)/16 5/529 (3)/660)/106 2 (0)/138)/144)/221 1 (0)/45)/59)/3 4 (3)/326)/59	6.3 (1.1-28.3) 1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Total papers published before 2000 Ekerhovd et al., 2001 [54] Modesitt et al., 2003 [4] Nardo et al., 2003 [62] Ueland et al. 2003 [66] Xiaoman et al., 2003 [55] Castillo et al., 2004 [56] Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al., 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total Premenopausal women only	5/529 7 (3)/660)/106 2 (0)/138)/144)/221 1 (0)/45)/59)/3 4 (3)/326)/59	1.1 (0.5-2.5) 1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Ekerhovd et al., 2001 [54] 7 Modesitt et al., 2003 [4] 0 Nardo et al., 2003 [62] 2 Ueland et al., 2003 [66] 0 Xiaoman et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 1 Total 2 Premenopausal women only	7 (3)/660 0/106 2 (0)/138 1/144 0/221 1 (0)/45 1/59 1/3 4 (3)/326 0/59	1.1 (0.5-2.2) 0.0 1.4 (0.4-5.1) 0.0 0.0 2.2 (0.4-11.6) 0.0 0.0 1.2 (0.5-3.1) 0.0
Modesitt et al., 2003 [4] 00 Nardo et al., 2003 [62] 2 Ueland et al. 2003 [66] 00 Xiaoman et al., 2003 [55] 00 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 00 Sarkar and Wolf, 2012 [64] 00 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 00 Total 2 Premenopausal women only	0/106 2 (0)/138 1/144 10/221 1 (0)/45 1/59 1/3 4 (3)/326 0/59	0.0 1.4 (0.4–5.1) 0.0 0.0 2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1)
Nardo et al., 2003 [62] 2 Ueland et al. 2003 [66] 0 Xiaoman et al., 2003 [55] 0 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 0 Total papers published after 2000 1 Total 2 Premenopausal women only	2 (0)/138)/144 1/221 ((0)/45)/59)/3 4 (3)/326)/59	1.4 (0.4–5.1) 0.0 0.0 2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1)
Ueland et al. 2003 [66] 0 Xiaoman et al., 2003 [55] 0 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 1 Total papers published after 2000 1 Total 2 Premenopausal women only	0/144 0/221 ((0)/45 0)/59 0/3 4 (3)/326 0/59	0.0 0.0 2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
Xiaoman et al., 2003 [55] 0 Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 0 Total papers published after 2000 1 Total 2 Premenopausal women only 2	0/221 (0)/45 0/59 0/3 4 (3)/326 0/59	0.0 2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
Castillo et al., 2004 [56] 1 Simcock and Anderson, 2005 [63] 0 Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 1 Total papers published after 2000 1 Total 2 Premenopausal women only	(0)/45 0/59 0/3 1 (3)/326 0/59 14/1761	2.2 (0.4–11.6) 0.0 0.0 1.2 (0.5–3.1) 0.0
Simcock and Anderson, 2005 [63] Sarkar and Wolf, 2012 [64] Valentin et al. 2013 [7] Bayoglu Tekin and Dede, 2014 [58] Total papers published after 2000 Total Premenopausal women only	0/59 0/3 1 (3)/326 0/59 1 4/1761	0.0 0.0 1.2 (0.5-3.1) 0.0
Sarkar and Wolf, 2012 [64] 0 Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 0 Total papers published after 2000 1 Total 2 Premenopausal women only)/3 1 (3)/326)/59 14/1761	0.0 1.2 (0.5-3.1) 0.0
Valentin et al. 2013 [7] 4 Bayoglu Tekin and Dede, 2014 [58] 0 Total papers published after 2000 1 Total 2 Premenopausal women only	1 (3)/326 0/59 14/1761	1.2 (0.5-3.1) 0.0
Bayoglu Tekin and Dede, 2014 [58] 0 Total papers published after 2000 1 Total 2 Premenopausal women only	0/59 14/1761	0.0
Total papers published after 2000 Total 2 Premenopausal women only	14/1761	
Total 2 Premenopausal women only	*	
Premenopausal women only		0.8(0.5-1.4)
	20 (8)/2290	0.9 (0.57–1.35)
	V/110	0.0
	0/110	0.0
	0/140	0.0
	0/250	0.0
	3 (2)/413	0.7 (0.2–2.1)
	0/194	0.0
	0/50	0.0
* * *	3/657	0.5 (0.2–1.3)
	3 (2)/907	0.3 (0.11–0.97)
Postmenopausal women only		
	0/29	0.0
	2 (0)/33	6.1 (1.7–19.6)
	3/34	8.8 (3.0–23.0)
	0/43	0.0
	0/43	0.0
	0/14	0.0
	l (1)/16	6.3 (1.1–28.3)
	5/212	2.8 (1.3-6.0)
	1 (1)/247	1.6 (0.6–4.1)
	2 (0)/138	1.5 (0.4–5.1)
	0/27	0.0
	1 (0)/45	2.2 (0.4–11.6)
	0/9	0.0
	0/3	0.0
	7/469	1.5 (0.7-3.0)
	13 (2)/681	1.9 (1.56-3.96)
Cysts < 5 cm in diameter		
Luxman et al., 1991 [49] 2	2 (0)/18	11.1 (3.1–32.8)
	0/43	0.0
Gerber et al., 1997 [61] 0)/59	0.0
	0/14	0.0
Reimer et al., 1999 [42] 0	0/8	0.0
	2/218	0.9 (0.3-3.3)
Nardo et al., 2003 [62] 0	0/84	0.0
Xiaoman et al., 2003 [55] 0)/76	0.0
Total papers published after 2000 0	0/160	0.0
Total 2	2 (0)/302	0.7 (0.18-2.38)
Cysts ≥5 cm in diameter		
	0/15	0.0
	0/81	0.0
	(1)/8	12.5 (2.2-47.1)
	1/104	1.0 (0.2-5.2)
	2 (0)/54	3.7 (1.0-12.5)
	0/145	0.0
	2/199	1.0 (0.3–3.6)
	3 (2)/303	1.0 (0.34–2.87)

The bold value indicates a total data.

borderline conditions. The risk is higher among postmenopausal women.

The apparent heterogeneity of the results of considered studies – in particular for unilocular cysts – represents a potential limitation of this analysis that can be probably explained by the different study design or patients' selection. Another limitation is the fact the authors classified unilocular cysts in different way.

This review and meta-analysis may be affected by potential limitation or bias. We considered only publications published in English. Authors may be more prone to publish in an international, English-language journal if results are positive, whereas negative findings are more often published in a local journal [67]. Limiting our analysis to publications in English language journals can therefore restrict the completeness of information. The direction and the strength of this bias is not however clear. Another limitation is the fact that most of studies included a very limited number of subjects. Although systematic reviews with meta-analyses provide an explicit method for synthesizing evidence and overcame the low power of the single studies, they may not be as valuable as a single large observational study.

One problem that arises in large retrospective reviews about ultrasound imagines, particularly when including older data, is that tumors with morphological properties other than simple unilocular tumors are inadvertently included. In this review we included published papers almost 30 years ago and during this time modern ultrasound has improved in technical quality and interpretation. In order to overcame at least in part this potential bias we have analyzed separately studies published before or after 2000: the rate of malignancy tended to decrease in more recent papers, but the finding was not statistically significant.

Beyond methodological limitations of the available studies on malignant potential of unilocular cysts, the findings of the present systematic review have clinical implications also in terms of value of care, that is the balance between potential benefits, potential harms and costs [68,69].

The critical issue in women with no family history of ovarian cancer is the choice between watchful waiting and surgery [70,71].

In this analysis, the risk of malignancy was limited in premenopausal women (1/300 in patients with anechoic cysts, and 1/160 independently of echogenity), and substantially higher in postmenopausal ones (between 1/50 in patients with anechoic cysts and 1/30 independently of echogenity). Expectations on effects of the alternative therapeutic options on mortality from ovarian cancer should take into consideration that about half of the observed tumors were of borderline malignancy.

Conclusion

Within the context of a policy aimed at limiting oncological risk, the ultimate challenge is, on one hand, preventing overdiagnosis and overtreatment and, on the other hand, limiting the long-term burden of treatment associated with prolonged surveillance. The results of this analysis offer quantitative information on the risk of malignancy in unilocular adnexal cysts. The final clinical choice between surgery or expectation should be individualized, based on the combination of each patient's overall risk profile as well as personal priorities.

Disclosure of interests

FP, MPF, FC, DD, ER and PV declare that there is no conflict of interest.

Contribution to authorship

FP, MPF, PV: conception and design of the study, manuscript preparation; MPF, FC, DD and ER: acquisition data; FP, MPF and FC: analysis and interpretation of data; all the authors: critical revision of the article for important intellectual content, and approval of the final version of the manuscript.

Funding

This study was not funded.

References

- [1] Farghaly S.A.. Current diagnosis and management of ovarian cysts. Clin Exp Obstet Gynecol 2014;41:609–12.
- [2] Greenlee RT, Kessel B, Williams CR, Riley TL, Ragard LR, Hartge P, et al. Prevalence, incidence, and natural history of simple ovarian cysts among women > 55 years old in a large cancer screening trial. Am J Obstet Gynecol 2010;202:373 e1–9.
- [3] McDonald JM, Modesitt SC. The incidental postmenopausal adnexal mass. Clin Obstet Gyneco 2006;49:506–16.
- [4] Modesitt SC, Pavlik EJ, Ueland FR, DePriest PD, Kryscio RJ, van Nagell JR. Risk of malignancy in unilocular ovarian cystic tumors less than 10 centimeters in diameter. Obstet Gynecol 2003;102:594–9.
- [5] Roman LD, Muderspach LI, Stein SM, Laifer-Narin S, Groshen S, Morrow CP. Pelvic examination, tumor marker level, and gray-scale and Doppler sonography in the prediction of pelvic cancer. Obstet Gynecol 1997;89:493–500.
- [6] Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol 2009;10:327–40.
- [7] Valentin L, Ameye L, Franchi D, Guerriero S, Jurkovic D, Savelli L, et al. Risk of malignancy in unilocular cysts: a study of 1148 adnexal masses classified as unilocular cysts at transvaginal ultrasound and review of the literature. Ultrasound Obstet Gynecol 2013;41:80–9.
- [8] Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- [9] Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008–12.
- [10] Salim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003;73:712–6.
- [11] StataCorp. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.; 2015.
- [12] Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform metaanalysis of binomial data. Arch Public Health 2014;72:39.
- [13] Fleischer AC, McKee MS, Gordon AN, et al. Transvaginal sonography of postmenopausal ovaries with pathologic correlation. J Ultrasound Med 1990;9:637–44.
- [14] Sassone AM, Timor-Tritsch IE, Artner A, Westhoff C, Warren WB. Transvaginal sonographic characterization of ovarian disease: evaluation of a new scoring system to predict ovarian malignancy. Obstet Gynecol 1991;78:70–6.
- [15] Davies AP, Jacobs I, Woolas R, Fish A, Oram D. The adnexal mass: benign or malignant?: Evaluation of a risk of malignancy index. Br J Obstet Gynaecol 1993;100:927–31.
- [16] DePriest PD, Shenson D, Fried A, et al. A morphology index based on sonographic findings in ovarian cancer. Gynecol Oncol 1993;51:7–11.
- [17] Tingulstad S, Hagen B, Skjeldestad FE, et al. Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. BJOG 1996;103:826–31.
- [18] Pascual MA, Hereter L, Tresserra F, Carreras O, Ubeda A, Dexeus S. Transvaginal sonographic appearance of functional ovarian cysts. Hum Reprod 1997;12:1246–9.
- [19] Sharma A, Gentry-Maharaj A, Burnell M, et al. Assessing the malignant potential of ovarian inclusion cysts in postmenopausal women within the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a prospective cohort study. BJOG 2012;119:207–19.
- [20] Rossi A, Forzano L, Romanello I, Ambrosini G, Iuri V, Marchesoni D. Comparison of pelvic masses score (PMS) and Risk of Malignancy Index (RMI 3) in the evaluation of pelvic masses. Eur J Gynaecol Oncol 2014;35:421–4.
- [21] Simsek HS, Tokmak A, Ozgu E, Doganay M, Danisman N, Erkaya S, et al. Role of a risk of malignancy index in clinical approaches to adnexal masses. Asian Pac J Cancer Prev 2014;15:7793–7.
- [22] Osmers RG, Osmers M, von Maydell B, Wagner B, Kuhn W. Preoperative evaluation of ovarian tumors in the premenopause by transvaginosonography. Am J Obstet Gynecol 1996;175:428–34.

- [23] Osmers RG, Osmers M, von Maydell B, Wagner B, Kuhn W. Evaluation of ovarian tumors in postmenopausal women by transvaginal sonography. Eur J Obstet Gynecol Reprod Biol 1998;77:81–8.
- [24] Alcázar JL, León M, Galván R, Guerriero S. Assessment of cyst content using mean gray value for discriminating endometrioma from other unilocular cysts in premenopausal women. Ultrasound Obstet Gynecol 2010;35:228–32.
- [25] Dörum A, Blom GP, Ekerhovd E, Granberg S. Prevalence and histologic diagnosis of adnexal cysts in postmenopausal women: an autopsy study. Am J Obstet Gynecol 2005;192:48.
- [26] Valentin L, Skoog L, Epstein E. Frequency and type of adnexal lesions in autopsy material from postmenopausal women: ultrasound study with histological correlation. Ultrasound Obstet Gynecol 2003;22:284–9.
- [27] Strigini FA, Gadducci A, Del Bravo B, Ferdeghini M, Genazzani AR. Differential diagnosis of adnexal masses with transvaginal sonography, color flow imaging, and serum CA 125 assay in pre- and postmenopausal women. Gynecol Oncol 1996;61:68–72.
- [28] Yazbek J, Helmy S, Ben-Nagi J, Holland T, Sawyer E, Jurkovic D. Value of preoperative ultrasound examination in the selection of women with adnexal masses for laparoscopic surgery. Ultrasound Obstet Gynecol 2007;30:883–8.
- [29] Quinlan DJ, Townsend DE, Johnson GH. Safe and cost-effective laparoscopic removal of adnexal masses. J Am Assoc Gynecol Laparosc 1997;4:215–8.
- [30] Parker WH, Berek JS. Management of selected cystic adnexal masses in postmenopausal women by operative laparoscopy: a pilot study. Am J Obstet Gynecol 1990;163:1574–7.
- [31] Gotlieb WH, Soriano D, Achiron R, Zalel Y, Davidson B, Kopolovic J, et al. CA 125 measurement and ultrasonography in borderline tumors of the ovary. Am J Obstet Gynecol 2000;183:541–6.
- [32] Levine D, Gosink BB, Wolf SI, Feldesman MR, Pretorius DH. Simple adnexal cysts: the natural history in postmenopausal women. Radiology 1992:184:653-9.
- [33] Timmerman D, Testa AC, Bourne T, Ameye L, Jurkovic D, Van Holsbeke C, et al. Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol 2008;31:681–90.
- [34] Valentin L, Akrawi D. The natural history of adnexal cysts incidentally detected at transvaginal ultrasound examination in postmenopausal women. Ultrasound Obstet Gynecol 2002;20:174–80.
- [35] Granberg S, Norström A, Wikland M. Tumors in the lower pelvis as imaged by vaginal sonography. Gynecol Oncol 1990;37:224–9.
- [36] Parker WH, Levine RL, Howard FM, Sansone B, Berek JS. A multicenter study of laparoscopic management of selected cystic adnexal masses in postmenopausal women. J Am Coll Surg 1994;179:733–7.
- [37] Valentin L, Sladkevicius P, Marsàl K, Limited contribution of Doppler velocimetry to the differential diagnosis of extrauterine pelvic tumors. Obstet Gynecol 1994;83:425–33.
- [38] Auslender R, Atlas I, Lissak A, Bornstein J, Atad J, Abramovici H. Follow-up of small, postmenopausal ovarian cysts using vaginal ultrasound and CA-125 antigen. J Clin Ultrasound 1996;24:331.
- [39] Valentin L. Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. Eur J Obstet Gynecol Reprod Biol 1997;72:63–72.
- [40] Bailey CL, Ueland FR, Land GL, DePriest PD, Gallion HH, Kryscio RJ, et al. The malignant potential of small cystic ovarian tumors in women over 50 years of age. Gynecol Oncol 1998;69:3–7.
- [41] Hata K, Akiba S, Hata T, Miyazaki K. A multivariate logistic regression analysis in predicting malignancy for patients with ovarian tumors. Gynecol Oncol 1998;68:256–62.
- [42] Reimer T, Gerber B, Müller H, Jeschke U, Krause A, Friese K. Differential diagnosis of peri- and postmenopausal ovarian cysts. Maturitas 1999;31:123–32.
- [43] Timmerman D, Testa AC, Bourne T, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol 2005;23:8794–801.
- [44] Jokubkiene L, Sladkevicius P, Valentin L. Does three-dimensional power Doppler ultrasound help in discrimination between benign and malignant ovarian masses? Ultrasound Obstet Gynecol 2007;29:215–25.
- [45] McDonald JM, Doran S, DeSimone CP, Ueland FR, DePriest PD, Ware RA, et al. Predicting risk of malignancy in adnexal masses. Obstet Gynecol 2010:115:687-94

- [46] Exacoustos C, Romanini ME, Rinaldo D, Amoroso C, Szabolcs B, Zupi E, et al. Preoperative sonographic features of borderline ovarian tumors. Ultrasound Obstet Gynecol 2005;25:50–9.
- [47] Gramellini D, Fieni S, Sanapo L, Casilla G, Verrotti C, Nardelli GB. Diagnostic accuracy of IOTA ultrasound morphology in the hands of less experienced sonographers. Aust N Z J Obstet Gynaecol 2008;48:195–201.
- [48] Bayar U, Barut A, Ayoğlu F. Diagnosis and management of simple ovarian cysts. Int | Gynaecol Obstet 2005;91:187–8.
- [49] Luxman D, Bergman A, Sagi J, David MP. The postmenopausal adnexal mass: correlation between ultrasonic and pathologic findings. Obstet Gynecol 1991;77:726–8.
- [50] Jain KA. Prospective evaluation of adnexal masses with endovaginal gray-scale and duplex and color Doppler US: correlation with pathologic findings. Radiology 1994;191:63–7.
- [51] Shalev E, Eliyahu S, Peleg D, Tsabari A. Laparoscopic management of adnexal cystic masses in postmenopausal women. Obstet Gynecol 1994;83:594-6.
- [52] Yamashita Y, Torashima M, Hatanaka Y, et al. Adnexal masses: accuracy of characterization with transvaginal US and precontrast and postcontrast MR imaging. Radiology 1995;194:557–65.
- [53] Conway C, Zalud I, Dilena M, et al. Simple cyst in the postmenopausal patient: detection and management. J Ultrasound Med 1998;17:369–72.
- [54] Ekerhovd E, Wienerroith H, Staudach A, Granberg S. Preoperative assessment of unilocular adnexal cysts by transvaginal ultrasonography: a comparison between ultrasonographic morphologic imaging and histopathologic diagnosis. Am J Obstet Gynecol 2001;184:48–54.
- [55] Xiaoman D, Jinhua L, Jinghe L, Huajun L. Evaluation of surgery in simple ovarian cysts. Chin Med Sci J 2003;18:93–6.
- [56] Castillo G, Alcázar JL, Jurado M. Natural history of sonographically detected simple unilocular adnexal cysts in asymptomatic postmenopausal women. Gynecol Oncol 2004;92:965–9.
- [57] De Kroon CD, van der Sandt HA, van Houwelingen JC, Jansen FW. Sonographic assessment of non-malignant ovarian cysts: does sonohistology exist? Hum Reprod 2004;19:2138–43.
- [58] Bayoğlu Tekin Y, Dede FS. What is the success of ultrasonography of benign adnexal masses? J Obstet Gynaecol Res 2014;40:473–8.
- [59] Obwegeser R, Deutinger J, Bernascheck G. The risk of malignancy with an apparently simple adnexal cyst on ultrasound. Arch Gynecol Obstet 1993;253:117–20.
- [60] Kroon E, Andolf E. Diagnosis and follow-up of simple ovarian cysts detected by ultrasound in postmenopausal women. Obstet Gynecol 1995;85:211-4.
- [61] Gerber B, Müller H, Külz T, Krause A, Reimer T. Simple ovarian cysts in premenopausal patients. Int J Gynaecol Obstet 1997;57:49–55.
- [62] Nardo LG, Kroon ND, Reginald PW. Persistent unilocular ovarian cysts in a general population of postmenopausal women: is there a place for expectant management? Obstet Gynecol 2003;102:589–93.
- [63] Simcock B, Anderson N. Diagnosis and management of simple ovarian cysts: an audit. Australas Radiol 2005;49:27–31.
- [64] Sarkar M, Wolf MG. Simple ovarian cysts in postmenopausal women: scope of conservative management. Eur J Obstet Gynecol Reprod Biol 2012;162:75–8.
- [65] Schoenfeld A, Levavi H, Hirsch M, Pardo J, Ovadia J. Transvaginal sonography in postmenopausal women. J Clin Ultrasound 1990;18:350–8.
- [66] Ueland FR, DePriest PD, Pavlik EJ, Kryscio RJ, van Nagell Jr. JR. Preoperative differentiation of malignant from benign ovarian tumors: the efficacy of morphology indexing and Doppler flow sonography. Gynecol Oncol 2003;91:46–50.
- [67] Gregoire G, Derderian F, LeLorier J. Selecting the language of the publications included in a meta-analysis: is there a Tower of Babel bias? J Clin Epidemiol 1995;48:159–63.
- [68] Colla CH. Swimming against the current—what might work to reduce low-value care? N Engl J Med 2014;371:1280–3.
- [69] Korenstein D. Patient perception of benefits and harms: the Achilles heel of high-value care, JAMA Intern Med 2015;175;287–8.
- [70] The american college of obstetricians and gynecologists. practice bullettin number 174. Evaluation and management of adnexal masses. Obstet Gynecol 2016;128:e210–22.
- [71] Glanc P, Benacerraf B, Bourne T, et al. First international consensus report on adnexal masses. J Ultrasound Med 2017;5:849–63.