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BACKGROUND: Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that
multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation.

OBJECTIVE AND RATIONALE: In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis
and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease.

SEARCH METHODS: Literature searches were performed in PubMed for English articles with the key words ‘endometriosis’, ‘endome-
triotic lesions’, ‘angiogenesis’, ‘vascularization’, ‘vasculogenesis’, ‘endothelial progenitor cells’ and ‘inosculation’. The searches included both
animal and human studies. No restriction was set for the publication date.

OUTCOMES: The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels
from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which acti-
vate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized
from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing
microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding
host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for
the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the
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diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by
means of anti-angiogenic compounds and vascular-disrupting agents.

WIDER IMPLICATIONS: The establishment of vascularization-based approaches in the management of endometriosis still represents a
major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity
must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without
inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved
in the near future.

Key words: endometriosis / vascularization / angiogenesis / vasculogenesis / endothelial progenitor cells / inosculation / estrogen /
VEGF / peritoneal fluid / miRNA

Introduction
Endometriosis is a benign gynecological disease affecting 6–10% of all
women of reproductive age and up to 50% of women with infertility
(Giudice, 2010). Typical symptoms are chronic pelvic pain, congestive
dysmenorrhea, heavy menstrual bleeding, deep dyspareunia and
fatigue (Culley et al., 2013). In many cases endometriosis patients
look back on a long history of suffering due to insufficient diagnostic
options and therapeutic procedures, which are frequently associated
with multiple side effects and high recurrence rates (Guo, 2009;
Bozdag, 2015; Simpson et al., 2015). Hence, endometriosis does not
only substantially impair the patients’ quality of life (De Graaff et al.,
2013), but also imposes a considerable economic burden on the
health care system (Simoens et al., 2007).

Endometriosis is defined by the presence of endometriotic lesions
in extrauterine locations, such as the pelvic peritoneum, the ovaries
and the rectovaginal septum (Burney and Giudice, 2012). These
lesions originate from endometrium, which consists of endometrial
glands that are surrounded by a well-vascularized stroma (Groothuis
et al., 2005). In contrast to other tissue types, the endometrium
undergoes highly dynamic changes during the menstrual cycle, which
are associated with estrogen-driven angiogenesis in the proliferative
phase and progesterone-driven vascular maturation in the secretory
phase (Okada et al., 2014). Accordingly, the vascularization of endo-
metriotic lesions also underlies a complex regulation by female sex
hormones. Furthermore, it is determined by the hypoxic state as well
as the developmental stage of the ectopic endometrial tissue.

Dependent on their typical appearance during laparoscopy, endo-
metriotic lesions are classified as red, black and white lesions. Red
lesions exhibit the highest microvessel density and mitotic activity
(Nisolle et al., 1993; Fujishita et al., 1999; Kuroda et al., 2009).
Moreover, they contain much higher fractions of immature microves-
sels when compared to black lesions (Matsuzaki et al., 2001a).
Accordingly, red lesions seem to be highly active and indicative for an
early stage of the disease (Nisolle et al., 1993; Kuroda et al., 2009). In
this stage the ectopic endometrial tissue rapidly establishes an own
blood supply, which is the prerequisite for its successful engraftment
and long-term survival (Becker and D’Amato, 2007; Laschke and
Menger, 2007). Hence, endometriosis is associated with the up-
regulation of angiogenic factors in the serum and peritoneal fluid of
the patients (Taylor et al., 2002; Bourlev et al., 2006a). This stimu-
lates the formation of new blood vessels within endometriotic lesions
and the surrounding peritoneum (May and Becker, 2008; Taylor
et al., 2009; Kuroda et al., 2010; Rocha et al., 2013). Taken together,

these findings indicate that vascularization is a major hallmark in the
pathogenesis of endometriosis, which represents a potential target
for the development of future diagnostic and therapeutic strategies.

Recent evidence suggests that multiple mechanisms contribute to
the vascularization of endometriotic lesions. These include angiogen-
esis and vasculogenesis as well as inosculation of preformed micro-
vascular networks (Fig. 1). In this review, we provide a systematic
overview of these processes in the context of endometriosis and par-
ticularly focus on their potential clinical implications in the diagnosis
and therapy of the disease.

Methods
Literature searches were performed in PubMed for original and review
articles written in the English language focusing on vascularization in endo-
metriosis. The searches included the key words ‘endometriosis’ and
‘endometriotic lesions’, which were paired with the key words ‘angiogen-
esis’, ‘vascularization’, ‘vasculogenesis’, ‘endothelial progenitor cells’ and
‘inosculation’. The searches included both animal and human studies. No
restriction was set for the publication date.

Angiogenesis

Definition and biological process
Angiogenesis is defined as the development of new blood vessels from
pre-existing ones (Chung et al., 2010). It is initiated by angiogenic growth
factors, such as vascular endothelial growth factor (VEGF), which activate
the quiescent endothelial cells of a microvessel to release matrix metallo-
proteinases (MMPs) (Potente et al., 2011). These proteolytic enzymes
degrade the vessel’s basement membrane. In addition, perivascular mural
cells are stimulated to detach from the outer vessel wall by angiopoietin
(Ang)-2 (Augustin et al., 2009). In consequence, the endothelial cells
migrate into the surrounding tissue, resulting in the formation of vascular
buds and sprouts. The organization of these sprouts underlies the tight
control of Notch signaling, which determines the cellular specification
into tip and stalk cells (Phng and Gerhardt, 2009). Endothelial tip cells
form multiple filopodia and, thus, guide the newly developing sprouts
towards the angiogenic stimulus. They are followed by proliferating stalk
cells, which form a vascular lumen and mediate sprout elongation. Finally,
new blood-perfused vessel loops develop by interconnection of individual
sprouts. In a last step, these vessels undergo maturation, which is charac-
terized by the production of new extracellular matrix compounds and
the recruitment of stabilizing mural cells (Potente et al., 2011).
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Driven by the hope that targeting this process is an efficient strat-
egy for the treatment of growing tumors (Folkman, 1971), sprouting
angiogenesis is by now the most thoroughly investigated mechanism
of blood vessel formation. Accordingly, the majority of studies in the
field of endometriosis research has also focused on this mode of
vascularization.

Regulation
The regulation of angiogenesis in endometriosis shares many similar-
ities to the mechanisms mediating the pathological angiogenesis of

tumors and metastases. According to Sampson’s implantation theory,
endometriotic lesions develop from shed endometrial tissue frag-
ments, which enter the peritoneal cavity by retrograde menstruation
(Sampson, 1927). Hence, the ectopic endometrial tissue initially suf-
fers from hypoxia comparable to the cells in the center of a growing
tumor (Richard et al., 1999; Becker et al., 2008).

Hypoxia is one of the most potent stimuli for the up-regulation of
angiogenic growth factors. It prevents the proteasomal degradation
of hypoxia-inducible factor (HIF)-1α. This translocates into the
nucleus, where it acts as a transcription factor for various genes, such
as the gene encoding for VEGF (Becker et al., 2008; Hsiao et al.,

Figure 1 Basic modes of vascularization in endometriosis, i.e. angiogenesis (development of new blood vessels from pre-existing ones), vasculo-
genesis (incorporation of circulating EPCs from the bone marrow into the microvascular endothelium of newly developing microvessels) and inoscu-
lation (interconnection of individual blood vessels or entire microvascular networks with each other), as well as important molecular players and
signaling mechanisms (purple brackets indicate their localization: EC, endothelial cell; EPC, endothelial progenitor cell; L, lesion/endometrial cells; M,
macrophage; P, platelet; PF, peritoneal fluid; S, serum) that are involved in their regulation. Hypoxia, hormones and inflammation essentially stimulate
all three modes of vascularization. Light blue, endometriotic lesion; dark blue, native microvessels of the lesion; red, microvessels of the surrounding
host tissue; yellow = EPCs.
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2015). In line with these findings, Lu et al. (2014) detected a signifi-
cantly higher expression of HIF-1α and VEGF in hypoxia-exposed
human endometrial tissue when compared to hyperoxia- and
normoxia-exposed samples. Subcutaneous implantation of these tis-
sues in estrogen-stimulated ovariectomized severe combined
immunodeficiency (SCID) mice resulted in an increased growth of
the implants in the hypoxia group and a decreased growth of hyper-
oxic implants when compared to normoxic controls. High levels of
HIF-1α are also detected in ovarian endometriomas (Goteri et al.,
2010; Filippi et al., 2016; Yerlikaya et al., 2016), which is associated
with the up-regulation of VEGF mRNA expression (Filippi et al.,
2016). Hsiao et al. (2014) further found that hypoxia down-regulates
dual specificity phosphatase-2 (DUSP2), which enhances the growth
of endometriotic lesions by promoting interleukin (IL)-8-dependent
angiogenesis. This may explain the observation of Fasciani et al.
(2000, 2001) that levels of both VEGF and IL-8 are higher in the cys-
tic fluid of ovarian endometriomas than in serous and follicular cysts.

The expression of VEGF has been extensively studied in different
experimental endometriosis models and in tissue samples of endo-
metriosis patients (Deguchi et al., 2001; Gilabert-Estellés et al., 2007;
Xu et al., 2013; Song et al., 2014; Gonçalves et al., 2015). Machado
et al. (2010) reported that the expression of VEGF and its receptor
VEGFR-1 (Flk-1) is significantly higher in rat peritoneal lesions when
compared to eutopic endometrium. An up-regulation of VEGF
mRNA was also observed in human endometrial biopsy samples,
which were grafted on the chicken chorioallantoic membrane (CAM)
(Kressin et al., 2001). Clinical studies revealed that VEGF is particu-
larly expressed in red endometriotic lesions (Donnez et al., 1998;
Novella-Maestre et al., 2010), ovarian endometriomas with large
cysts (Goteri et al., 2004; Takehara et al., 2004) and deeply infiltrating
endometriosis affecting the rectum (Machado et al., 2008). This indi-
cates that VEGF expression correlates with the activity of endome-
triotic lesions and the stage of the disease.

Besides VEGF, numerous other factors have been reported to pro-
mote angiogenesis in endometriosis. These include fibroblast growth
factor (FGF) (Ferriani et al., 1993), platelet-derived endothelial cell
growth factor (PD-ECGF) (Fujimoto et al., 1999), angiopoietin (Ang)-
1/2 (Drenkhahn et al., 2004; Hur et al., 2006), MMP-1, MMP-2 and
MMP-9 (Ria et al., 2002; Wolber et al., 2003; Li et al., 2006; Juhasz-
Böss et al., 2010; Jana et al. 2016), endoglin (Kim et al., 2001;
Hayrabedyan et al., 2005), activin A (Rocha et al., 2012), galectin-1
(Bastón et al., 2014), cofilin-1 (Xu et al., 2010), microsomal prosta-
glandin E synthase (mPGES)-1 (Numao et al., 2011), macrophage
migration inhibitory factor (MIF) (Yang et al., 2000; Carli et al., 2009;
Veillat et al., 2010), IL-1β (Huang et al., 2013), IL-4 (Ouyang et al.,
2010), IL-17A (Ahn et al., 2015), PGF2α (Ahmad et al., 2015; Rakhila
et al., 2016a) and synuclein-γ (Edwards et al., 2014). On the other
hand, several factors, such as peroxisome proliferator-activated
receptor (PPAR)-γ (Peeters et al., 2005), pigment epithelium derived
factor (PEDF) (Sun et al., 2012; Fu et al., 2013), protein tyrosine
phosphatase (PTEN) (Lv et al., 2016) and non-metastatic gene 23-H1
(NME1) (Chang et al., 2013), have been shown to exert suppressive
effects on endometrial angiogenesis. This continuously growing list of
factors indicates that angiogenesis in endometriosis is not solely dri-
ven by a few specific mechanisms, but rather determined by the com-
plex expression patterns of various molecular players mediating
pro- and anti-angiogenic effects. Accordingly, it may be assumed that

the balance hypothesis for the angiogenic switch, as it has originally
been suggested for tumor angiogenesis (Hanahan and Folkman,
1996), is also applicable for endometriosis. The hypothesis postulates
that the microvasculature of tissues is kept in a quiescent state under
physiological conditions due to the balance of angiogenesis inducers
and inhibitors. In contrast, non-physiological conditions, such as the
retrograde menstruation of shed endometrial fragments into the peri-
toneal cavity, may increase the levels of angiogenesis inducers or
reduce the levels of angiogenesis inhibitors. This dysbalance finally
activates the angiogenic switch, resulting in the development of new
blood vessels (Fig. 1).

The stimulation of endometrial and endometriotic cells leads to
the activation of different intracellular pathways and associated signal-
ing molecules. A key player in this signaling network is cyclooxygen-
ase (COX)-2, the rate-limiting enzyme of PGE2 synthesis. There is a
close correlation between COX-2 and VEGF expression in ovarian
endometriomas (Ceyhan et al., 2008). Moreover, COX-2 regulates
MMP-2 activity in endometriotic lesions (Jana et al., 2016). The
expression of COX-2 underlies the control of p38 and extracellular
signal-regulated kinase (ERK)/mitogen-activated protein kinase
(MAPK) (Carli et al., 2009; Huang et al., 2013). These kinases are
activated by the pro-inflammatory cytokines MIF (Carli et al., 2009)
and IL-1β (Huang et al., 2013), indicating a close link between inflam-
mation and angiogenesis in endometriosis. Furthermore, they interact
with other signaling cascades. For instance, Matsuzaki and Darcha
(2015) observed an up-regulation of ERK expression in endometriotic
stromal cells when AKT expression was decreased and vice versa.
This important finding should be considered when developing novel
treatment strategies for endometriosis, because such compensatory
effects can cause therapy resistance.

Besides COX-2, protein kinase CK2 (Feng et al., 2012), SLIT2/
Roundabout (ROBO)1 (Guo et al., 2013) and Wnt/β-catenin
(de Mattos et al., 2016) are also potential angiogenic regulators,
which are extensively expressed in endometrial tissue. They are
important for endothelial cell differentiation and function and, thus,
are crucially involved in the development of new blood vessels under
physiological and pathological conditions (Wang et al., 2003; Dejana,
2010; Montenarh, 2014). Accordingly, Feng et al. (2012) detected a
significantly reduced microvessel density within engrafting murine
endometriotic lesions, which were treated with the CK2 inhibitor
quinalizarin, when compared to vehicle-treated controls. Guo et al.
(2013) cross-transplanted endometrial tissue within and between
SLIT transgenic and wild-type mice. Using this elegant approach, they
could demonstrate that SLIT2 overexpression increases the micro-
vessel density and size of lesions in the peritoneal cavity of mice.
Finally, de Mattos et al. (2016) observed a strong activation of the
Wnt/β-catenin pathway in rat endometriotic lesions, as indicated by
high levels of nuclear β-catenin.

In addition, Notch signaling has recently been shown to control
angiogenic sprout formation in engrafting ectopic endometrial tissue
(Körbel et al., 2017). This process is stimulated by VEGF, which
promotes the expression of membrane-bound Notch ligand Dll4
on individual microvascular endothelial cells (Lobov et al., 2007).
Consequently, they become non-proliferating tip cells that bind
with DII4 to Notch1 receptors on adjacent endothelial cells, inducing
the cleavage of the Notch intracellular domain by a γ-secretase. This
makes the neighboring cells less sensitive to VEGF stimulation by
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down-regulation of VEGFR-2 expression and activates their prolifer-
ation (Gerhardt et al., 2003). Accordingly, they become stalk cells and
contribute to the growth of angiogenic sprouts. In line with these find-
ings, Körbel et al. (2017) demonstrated that inhibition of Notch signaling
by the γ-secretase inhibitor DAPT increases the number of angiogenic
sprouts within newly developing murine endometriotic lesions.

A rapidly growing number of studies further suggests an important
function of microRNAs (miRNAs) in the highly complex signaling net-
work regulating angiogenesis in endometriosis (Teague et al., 2010;
Marí-Alexandre et al., 2015). MiR-200c (Panda et al., 2012), miR-15a-
5p (Liu et al., 2016b; Yang et al., 2016), miR-20a (Lin et al., 2012),
miR-199a (Dai et al., 2015), miR-199a-5p (Hsu et al., 2014), miR-210
(Okamoto et al., 2015), miR-503 (Hirakawa et al., 2016), miR-125a,
miR-222, miR-17-5p (Ramón et al., 2011) as well as miR-202-3p,
miR-424-5p, miR449b-3p and miR-556-3p (Braza-Boïls et al., 2014)
have recently been reported to control the expression of angiogenic
factors in eutopic endometrium and endometriotic lesions. Braza-
Boïls et al. (2013, 2015) found that the peritoneal fluid from patients
with endometriosis modulates the expression of such miRNAs in
endometrial and endometriotic cell cultures. Hence, they suggested
that this may be an important mechanism contributing to the angio-
genic and proteolytic disequilibrium in the peritoneal cavity of endo-
metriosis patients.

The production and release of angiogenic factors is not restricted
to the ectopic endometrial tissue. In fact, endometriosis is typically
associated with chronic inflammation, which is characterized by high
pro-inflammatory cytokine levels and the activation of inflammatory
cells in the peritoneal microenvironment (Taylor et al., 1997).
Accordingly, macrophages are a major source for VEGF in endomet-
riosis (McLaren et al., 1996a). They also release IL-1β, which stimu-
lates the production of VEGF and IL-6 by stromal cells from
endometriotic lesions (Lebovic et al., 2000). Moreover, macrophages
are alternatively activated in endometriotic lesions, which improves
their pro-angiogenic capacity and promotes ectopic lesion growth
(Bacci et al., 2009). Capobianco et al. (2011) further found that Tie2-
expressing macrophages (TEMs) infiltrate tissue areas surrounding
newly formed endometriotic microvessels, where they maintain ves-
sel viability by suppressing apoptotic cell death of endothelial cells.
Additional inflammatory cells, which contribute to angiogenesis in
endometriosis, are neutrophils (Lin et al., 2006; Na et al., 2006), den-
dritic cells (Fainaru et al., 2008; Pencovich et al., 2014) and regulatory
T cells (Wang et al., 2017).

Angiogenesis in endometriotic lesions is also markedly influenced
by hormones. In line with the fact that endometriosis is an estrogen-
dependent disease, vascularization of endometriotic lesions is stimu-
lated by estrogen (Laschke et al., 2005; Huang et al., 2014; Zhao
et al., 2015; Zhang et al., 2016), whereas progesterone suppresses
blood vessel formation (Li et al., 2016). Moreover, systemic adrener-
gic signaling induced by surgery or social psychogenic stress increases
angiogenesis and accelerates growth of endometriotic lesions in mice
(Long et al., 2016a,b; Guo et al., 2017). This raises the possibility that
the progression of endometriosis may be positively influenced by
stress-reducing measures.

Taken together, these findings demonstrate that angiogenesis in
endometriosis underlies the complex regulation of numerous intra-
and extra-cellular signaling molecules, which interact with each other
and are influenced by local hypoxia and inflammatory stimuli within

the specific microenvironment of the peritoneal cavity, as well as sys-
temic hormone levels (Fig. 1). However, this regulation is even more
complex considering the fact that different endometriosis phenotypes
markedly differ in terms of their expression levels of genes associated
with hypoxia and angiogenesis. For instance, Filippi et al. (2016)
reported that ovarian endometrioma express high levels of HIF-1/2α,
protease-activated receptor (PAR)-1/4 and VEGF, whereas deep
infiltrating endometriosis does not show significantly different gene
expression patterns when compared to endometrium from unaffected
women. Moreover, in comparison to black and white peritoneal
lesions, red lesions are typically characterized by the up-regulation
of pro-angiogenic factors, such as VEGF and HGF, which is asso-
ciated with an increased microvessel density and less fibrosis
(Donnez et al., 1998; Khan et al., 2004). Hence, different subtypes
of endometriotic lesions exhibit specific vascularization patterns. In
reverse, it may be speculated that different vascularization pat-
terns determine the development of ectopic endometrium into
specific endometriosis phenotypes and, thus, actively contribute to
the heterogeneity of the disease.

Clinical implications
The fundamental role of angiogenesis in the pathogenesis of endo-
metriosis is reflected by the observation that the peritoneal fluid
from endometriosis patients significantly increases the proliferation of
endothelial cells (Sokolov et al., 2005) and induces a strong vascular
reaction in the CAM model (Oosterlynck et al., 1993). This is due to
the fact that the peritoneal fluid contains elevated concentrations of
different angiogenesis-promoting factors (Table I), including VEGF
(McLaren et al., 1996b; Mahnke et al., 2000; Bourlev et al., 2006a;
Kianpour et al., 2013; Young et al., 2015), soluble VEGF receptor
(sVEGFR)-1 (Bourlev et al., 2010), Ang-2 (Bourlev et al., 2010),
insulin-like growth factor (IGF)-1 (Sokolov et al., 2005), erythropoi-
etin (Matsuzaki et al., 2001b), hepatocyte growth factor (HGF) (Zong
et al., 2003), MIF (Kats et al., 2002), tumor necrosis factor (TNF)-α
(Maas et al., 2001), IL-6 (Mahnke et al., 2000), IL-8 (Barcz et al.,
2002), angiogenin (Suzumori et al., 2004a) and epithelial neutrophil-
activating peptide (ENA)-78 (Suzumori et al., 2004b). On the other
hand, the peritoneal fluid of endometriosis patients also contains
lower concentrations of the anti-angiogenic factors adiponectin
(Takemura et al., 2005), interferon-gamma-induced protein (IP)-10
(Yoshino et al., 2003; Rakhila et al., 2016b) and sVEGFR-2 (Bourlev
et al., 2010) (Table I). VEGF, ENA-78 and HGF levels are particu-
larly high whereas IP-10 and adiponectin levels are low in women
with advanced stages of the disease.

These findings imply the interesting possibility that pro- and anti-
angiogenic factors may serve in the future as biomarkers for the
diagnosis and classification of endometriosis or for the efficacy assess-
ment of therapeutic approaches (May et al., 2010). For this purpose,
serum or urinary levels of VEGF (Bourlev et al., 2006a, 2010; Wang
et al., 2009; Kopuz et al., 2014; Vodolazkaia et al., 2016), sVEGFR-1
(Cho et al., 2007), FGF-2 (Bourlev et al., 2006b), HIF-1α (Karakus
et al., 2016), Ang-2 (Bourlev et al., 2010), HGF (Zong et al., 2003),
IL-8 (Barcz et al., 2002) and gremlin-1 (Sha et al., 2009) have been
compared in patients with and without endometriosis (Table I).
However, although promising differences between the study groups
were detected, so far none of these factors has been clearly shown
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to be of clinical use due to insufficient sensitivity and specificity. This
may be partly explained by too low numbers or heterogeneous dis-
ease stages of the enrolled patients. In addition, it may not be expedi-
ent to focus on only one of these factors. As suggested by May et al.
(2010), it is much more reasonable to develop a reliable diagnostic tool
for endometriosis by combining a panel of different biomarkers. This is
a realistic goal for the near future considering the impressive progress in
genomics, proteomics and metabolomics. Such a tool may not only be
useful for diagnostic means but also to assess the risk of developing
endometriosis or adenomyosis. Several genetic polymorphisms of VEGF
and FGF have already been identified, and may be associated with these
diseases (Bhanoori et al., 2005; Gentilini et al., 2008; Kang et al., 2009,
2010; Li et al., 2013; Cardoso et al., 2017).

In line with the famous concept ‘Fighting cancer by attacking its
blood supply’ postulated by Judah Folkman (1996), angiogenesis has
also been proposed as a promising target for gene therapy (Dabrosin
et al., 2002; Ma and He, 2014; Wang et al., 2014) or pharmacological
treatment of endometriosis (Nap et al., 2004; Becker and D’Amato,
2007; Van Langendonckt et al., 2008; Liu et al., 2016a). Accordingly,
numerous compounds with anti-angiogenic activity have been evalu-
ated in pre-clinical endometriosis studies, as summarized in detail in a
previous review (Laschke and Menger, 2012a). Briefly, they include
growth factor inhibitors (Ricci et al., 2011), endogenous angiogenesis
inhibitors (Becker et al., 2006), fumagillin analogues (Nap et al., 2005),
statins (Bruner-Tran et al., 2009), COX-2 inhibitors (Laschke et al.,
2007), phytochemicals (Rudzitis-Auth et al., 2013), immunomodulators

.............................................................................................................................................................................................

Table I Studies reporting elevated levels of pro-angiogenic factors or decreased levels of anti-angiogenic factors in the
peritoneal fluid, serum/plasma or urine of endometriosis patients.

Effect on angiogenesis Factor Analyzed fluid Study

Pro-angiogenic (elevated levels) Angiogenin Peritoneal fluid Suzumori et al. (2004a)

ENA-78 Peritoneal fluid Suzumori et al. (2004b)

Erythropoietin Peritoneal fluid Matsuzaki et al. (2001b)

FGF-2 Serum Bourlev et al. (2006b)

Gremlin-1 Serum Sha et al. (2009)

HGF Peritoneal fluid
Serum

Zong et al. (2003)

HIF-1α Serum Karakus et al. (2016)

IGF-1 Peritoneal fluid Sokolov et al. (2005)

IL-6 Peritoneal fluid Mahnke et al. (2000)

IL-8 Peritoneal fluid
Serum

Barcz et al. (2002)

MIF Peritoneal fluid Kats et al. (2002)

sVEGFR-1 Peritoneal fluid Bourlev et al. (2010)

Serum Bourlev et al. (2010)

Cho et al. (2007)

Urine Cho et al. (2007)

TNF-α Peritoneal fluid Maas et al. (2001)

VEGF Peritoneal fluid Bourlev et al. (2006a)

Bourlev et al. (2010)

Kianpour et al. (2013)

McLaren et al. (1996b)

Mahnke et al. (2000)

Wang et al. (2009)

Young et al. (2015)

Serum/plasma Bourlev et al. (2006a)

Bourlev et al. (2010)

Kopuz et al. (2014)

Vodolazkaia et al. (2016)

Wang et al. (2009)

Anti-angiogenic (decreased levels) Adiponectin Peritoneal fluid Takemura et al. (2005)

IP-10 Peritoneal fluid Yoshino et al. (2003)

Rakhila et al. (2016b)

sVEGFR-2 Peritoneal fluid
Serum

Bourlev et al. (2010)
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(Laschke et al., 2006a), dopamine agonists (Novella-Maestre et al.,
2009), PPAR agonists (Nenicu et al., 2014) and anti-hormonal drugs
(Katayama et al., 2010). Most of these compounds have been shown
to reduce the microvessel density of endometriotic lesions in differ-
ent animal models, which was associated with lower numbers of
engrafted lesions or a suppressed lesion growth. These experimental
findings indicate that anti-angiogenic approaches may indeed be useful
to prevent the development of new lesions or the progression of the
disease. Moreover, they may have direct beneficial effects on the pain
symptoms of endometriosis patients. According to the concept of
neuroangiogenesis (Asante and Taylor, 2011), blood vessels invad-
ing endometriotic lesions are accompanied by nerve fibers, which is
regulated by estrogen-dependent SLIT/ROBO signaling (Greaves et al.,
2014a). These nerve fibers stimulate dorsal root neurons within the cen-
tral nervous system, which increases the pain perception in endometri-
osis patients (Asante and Taylor, 2011). Based on this, Novella-Maestre
et al. (2012) reported that treatment of human endometrial fragments in
nude mice with the anti-angiogenic agent cabergoline diminishes not only
blood vessel formation but also nerve fiber ingrowth in the ectopic
tissue.

However, despite these promising experimental results, an anti-
angiogenic therapy could not be implemented yet into the clinical
routine treatment of endometriosis. This may be due to several rea-
sons. Endometriosis is a heterogeneous disease with diverse types
of lesions in different locations that markedly differ in terms of their
tissue composition and vascularization (Jondet et al., 2006). Anti-
angiogenic compounds may mainly target early red lesions exhibiting
a high angiogenic activity and many immature microvessels, whereas
older black and white lesions may be resistant to this type of treat-
ment. Hence, anti-angiogenic therapy may not be suitable as a
monotherapy focusing on the pharmacological eradication of well-
established endometriotic lesions in the peritoneal cavity. However,
it could gain major importance in the prevention of new lesion
formation after surgical removal, and, thus, help to reduce the high
recurrence rates of surgical endometriosis therapy.

In addition, resistance to an anti-angiogenic therapy may be caused
by the balanced cross-talk of different angiogenic factors and signaling
pathways, compensating the inhibition of only one target (Matsuzaki
and Darcha, 2015). This problem may be overcome by means of
pleiotropic compounds, which simultaneously suppress different
angiogenic mechanisms (Laschke et al., 2011a), or by means of a
combination therapy. For instance, Nenicu et al. (2017) treated mur-
ine endometriosis-like lesions with telmisartan, an angiotensin II type
1 receptor blocker and activator of PPAR-γ, together with the select-
ive COX-2 inhibitor parecoxib. In contrast to the monotherapy with
these compounds, this combination therapy inhibited both AKT and
ERK signaling, resulting in a higher therapeutic efficiency as indicated
by an enhanced regression of the lesions.

Finally, a further reason why the anti-angiogenic therapy has not
yet made its way in the treatment of endometriosis comparable to
the treatment of cancer is that women suffering from endometriosis
are, in contrast to most cancer patients, in their reproductive age and
may desire to have children. Fertility and pregnancy are crucially
dependent on physiological angiogenesis in the ovary, uterus and pla-
centa (Shimizu et al., 2012). Therefore, anti-angiogenic compounds
may be only acceptable for the short-term treatment of endometri-
osis patients and should not induce long-term side effects on the

female reproductive organs. They should ideally inhibit blood vessel
formation only in endometriotic lesions. This, however, requires the
identification of highly selective, endometriosis-specific target mole-
cules, which have not been identified so far. Hence, for the present it
may be more realistic to develop an anti-angiogenic treatment modal-
ity for endometriosis patients with compounds, which have been
shown to have a favorable safety profile and are already clinically
approved for the therapy of other benign diseases, such as dopamine
agonists (Delgado-Rosas et al., 2011; Gómez et al., 2011).

Vasculogenesis

Definition and biological process
Vasculogenesis has been originally defined as the de novo formation
of blood vessels by differentiation and assembly of angioblastic pro-
genitor cells during embryogenesis (Risau and Flamme, 1995).
Meanwhile, it is well known that vasculogenesis also occurs in adults.
This type of post-natal vasculogenesis is defined as the incorporation
of circulating endothelial progenitor cells (EPCs) from the bone mar-
row into the microvascular endothelium of newly developing micro-
vessels (Asahara et al., 1999; Asahara and Kawamoto, 2004).

EPCs contribute to the formation of new blood vessels under vari-
ous pathological conditions, such as tumor growth (Ding et al., 2008),
myocardial infarction (King and McDermott, 2014) and stroke (Ma
et al., 2015). However, they are also essential for the physiological
vascularization of the regenerating endometrium during the menstrual
cycle (Masuda et al., 2007; Mints et al., 2008; Demir et al., 2010). In
addition, EPCs are recruited in the microvasculature of endometriotic
lesions (Laschke et al., 2011b). The first proof of vasculogenesis in
experimental endometriosis was provided by two independent stud-
ies in 2011. In these studies, endometriotic lesions were surgically
induced in irradiated mice, which were reconstituted with bone mar-
row from green fluorescent protein (GFP)+ mice (Becker et al., 2011;
Laschke et al., 2011c). This GFP+/GFP− cross-over design allowed
the immunohistochemical detection of GFP+ EPCs in the engrafting
endometriotic lesions, indicating that vasculogenesis is a relevant
mode of vascularization in endometriosis (Fig. 2).

Regulation
EPCs are mobilized from the bone marrow into the circulation in
response to high levels of chemoattractive factors in the blood
(Heissig et al., 2002; Rafii and Lyden, 2003). These factors include
VEGF and FGF (Kalka et al., 2000; Fontaine et al., 2006), which are
also increased in the serum of endometriosis patients (Bourlev et al.,
2006b; Kopuz et al., 2014). The homing of circulating EPCs in endo-
metriotic lesions is regulated by the interaction of their receptor che-
mokine receptor type (CXCR)4 with the small molecular weight
chemokine stromal cell-derived factor (SDF)-1 (Laschke et al.,
2011c). Tissue hypoxia up-regulates HIF-1α-mediated SDF-1 expres-
sion (Ceradini et al., 2004). Accordingly, tissue levels of SDF-1 are
particularly high in early engrafting murine endometriotic lesions,
which still exhibit an incomplete vascularization (Laschke et al.,
2011c). Increased SDF-1 gene and protein expression levels are also
detected in different types of human endometriosis (Furuya et al.,
2007; Virani et al., 2013). Blockade of the SDF-1/CXCR4 axis
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significantly reduces the number of recruited EPCs in endometriotic
lesions, which are induced by transplantation of murine (Laschke
et al., 2011c) or human endometrium (Virani et al., 2013) into the
peritoneal cavity of recipient mice. This is associated with a lower
microvessel density and survival of the ectopic endometrial tissue
(Laschke et al., 2011c; Virani et al., 2013).

Vasculogenesis in endometriotic lesions may also be a hormonally
regulated process. This has been indicated by a recent study dem-
onstrating that the treatment of mice with β-estradiol 17-valerate
promotes the incorporation of EPCs into the newly developing micro-
vasculature of surgically induced endometriotic lesions (Rudzitis-Auth

et al., 2016). This observation can be explained by different estrogen
effects. In-vitro analyses revealed that estrogen directly activates EPCs via
estrogen receptor-α, which increases their proliferation, viability as well
as their migratory and tube-forming activity (Strehlow et al., 2003; Zhao
et al., 2008; Rudzitis-Auth et al., 2016). Gene expression profile analyses
of estrogen-treated murine endometriotic lesions further showed
a strong up-regulation of the EPC-activating factor plasma kallikrein
B1 (Rudzitis-Auth et al., 2016), which stimulates EPC homing under
inflammatory conditions by bradykinin-mediated up-regulation of che-
mokine receptor type-4 (Dai et al., 2012). Moreover, several studies
demonstrated that estrogen and phytoestrogens mobilize EPCs from

Figure 2 Experimental GFP+/GFP− cross-over design for the immunohistochemical detection of GFP+ EPCs in engrafting murine endometriotic
lesions. (A) Hematoxylin–eosin-stained cross section of a peritoneal endometriotic lesion (borders marked by broken line) at Day 28 after fixation
of an uterine tissue sample from a FVB/N mouse to the lateral abdominal wall of a Tie2-GFP bone marrow-transplanted animal. The lesion is char-
acterized by a cyst-like dilated endometrial gland (asterisk), which is surrounded by a well-vascularized endometrial stroma. (B) Immunohistochemical
detection of GFP+ endothelial cells (arrows) of a blood vessel within an endometriotic lesion at Day 28, representing recruited bone marrow-
derived EPCs. (C–E) Immunofluorescence microscopy of an endometriotic lesion at Day 14 after transplantation of an uterine tissue sample from a
FVB/N mouse into the peritoneal cavity of a Tie2-GFP bone marrow-transplanted animal. Histological sections were stained with Hoechst to iden-
tify cell nuclei (C–E, blue), an antibody against the endothelial cell marker CD31 (C, E, red) and an antibody against GFP (D, E, green). E displays
the merge of C and D. The EPC, which stains double positive for CD31/GFP (arrowheads), is next to a normal CD31-positive endothelial cell
(arrows). Scale bars: 200 μm (A); 8 μm (B); 7 μm (C–E). (F) Number (percentage) of GFP+ endothelial cells lining the wall of blood vessels in endo-
metriotic lesions at Days 3, 7, 14, and 28 after fixation of uterine tissue samples from FVB/N mice to the lateral abdominal wall of Tie2-GFP bone
marrow-transplanted animals. Data are given as the mean ± SEM. *P < 0.05 versus Day 3. The figure is reprinted from Laschke et al. (2011c); used
with permission from Elsevier.
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the bone marrow (Ruifrok et al., 2009; Chan et al., 2011). However,
others could not detect increased levels of circulating EPCs in response
to estrogen (Robb et al., 2009; Webster et al., 2013; Rudzitis-Auth
et al., 2016), but rather observed large variations of EPC levels
between individual subjects (Webster et al., 2013). Hence, additional
studies are needed to clarify the influence of estrogen on EPC mobil-
ization and to identify possible biases, which may have contributed to
these contradictory findings.

Finally, it may be speculated that additional mechanisms mediate
the recruitment of EPCs into endometriotic lesions, which, however,
have not been investigated systematically so far. For instance, Lev
et al. (2006) found that circulating EPCs can be captured from the
bloodstream by activated platelets through interaction of their surface
adhesion molecules P-selectin glycoprotein ligand (PSGL)-1 and P-
selectin. In turn, pioneering work of Guo and coworkers showed that
administration of soluble P-selectin to block PSGL-1 (Guo et al.,
2015) and different platelet depletion schemes (Guo et al., 2016)
reduces the size of developing murine endometriotic lesions. In line
with the results of Lev et al. (2006), this was associated with a
decreased lesion vascularization.

In addition, EPCs also express lymphocyte function-associated anti-
gen (LFA)-1 and very late antigen (VLA)-4 on their surface (Duan
et al., 2006). Hence, they may directly bind to the endothelial ligands
intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion
molecule (VCAM)-1 (Duan et al., 2006; Silverman et al., 2007).
These endothelial adhesion molecules are up-regulated in response to
stimuli, which are typically associated with engrafting endometriotic
lesions, such as progressively increasing microvascular shear stress
(Laschke et al., 2005) and inflammation (Jiang et al., 2016).

Clinical implications
The finding that vasculogenesis is an important process in the vascu-
larization of endometriotic lesions opens the door for the develop-
ment of novel diagnostic and therapeutic tools for endometriosis
patients. For this purpose, it may be expedient to clarify whether cur-
rently discussed EPC-based concepts developed in cardiovascular and
oncology research can be transferred to endometriosis.

A common approach is the measurement of circulating EPC levels
as biomarker for disease risk, activity and progression (Werner et al.,
2005; Zhang et al., 2005). Becker et al. (2011) detected elevated
levels of EPCs in the blood of 129/SvJ mice with surgically induced
endometriotic lesions when compared to sham-operated control ani-
mals. The concentrations of EPCs positively correlated with the
amount of endometriotic tissue within the peritoneal cavity and
peaked in an early stage of lesion development. However, EPC levels
were not increased in this endometriosis model when using C57BL/6
mice (Becker et al., 2011; Laschke et al., 2011c), which exhibit a
markedly lower angiogenic activity than 129/SvJ mice (Rohan et al.,
2000). These findings indicate that the outcome of such analyses is
crucially dependent on the used mouse strain. Moreover, they raise
the important question of whether the results of experimental endo-
metriosis studies are transferable to the human disease if contrasting
effects are already observed within one species. It should be clear
that animal models cannot completely mimic the pathogenesis of
human endometriosis. On the other hand, due to the possibility of gen-
etic manipulation, they represent powerful tools for the identification of

novel molecular and cellular mechanisms of the disease in a controlled
in-vivo setting. For this purpose, it is of utmost importance to continu-
ously improve these models and to standardize experimental designs
and end-points to increase their predictive power (Pullen et al., 2011).
Specific examples for such improvements are the establishment of
humanized models of endometriosis by xenografting human tissue sam-
ples into immunodeficient mice (Bruner et al., 1997; Hull et al., 2008) or
the establishment of a menstruating mouse model of endometriosis
(Greaves et al., 2014b). High‐quality, clinically relevant data may be par-
ticularly generated by combining different in-vitro assays and in-vivo mod-
els that include human tissue (Greaves et al., 2017). Nonetheless, finally
the results from experimental endometriosis studies have to be con-
firmed in controlled randomized clinical trials.

Webster et al. (2013) performed the first clinical study to evaluate
the usability of circulating EPCs as biomarker for endometriosis. They
found that there was no significant difference in the mean EPC levels
between endometriosis patients and healthy women. Additional sub-
group analyses further showed no differences in the mean EPC levels
in patients with different stages of the disease according to the
revised ASRM classification system. However, the study did not con-
sider different lesion types in individual patients. Hence, the authors
speculated that an elevation of circulating EPCs may be possibly
detected in women with newly developing red lesions exhibiting a
high angiogenic activity (Webster et al., 2013).

Although the results of Webster et al. (2013) indicate that EPC
levels are not an appropriate biomarker for all stages of endometri-
osis, they do not exclude the possibility that EPCs are recruited into
the microvasculature of endometriotic lesions without a demon-
strable effect on peripheral EPC levels (Laschke et al., 2011c). In this
case, EPCs may be alternatively used as carriers of contrast agents
for the non-invasive diagnostic detection of endometriotic lesions
within the peritoneal cavity. Although such an application is still fic-
tion, promising experimental results already indicate that EPCs can
be loaded with iron oxide nanoparticles, which allows their visualiza-
tion by means of magnetic resonance imaging (Gazeau and Wilhelm,
2010). In addition, modified EPCs may also serve as shuttles for
selective future gene therapy of endometriotic lesions, as currently
being evaluated for the treatment of tumors (Chen et al., 2014;
Laurenzana et al., 2016).

Inosculation

Definition and biological process
Inosculation is defined as the interconnection of individual blood ves-
sels or entire microvascular networks with each other (Laschke and
Menger, 2012b). This process contributes to the rapid onset of blood
perfusion in tissue grafts, which already contain preformed microves-
sels, such as transplanted skin (Converse et al., 1975) and bone
(Rothenfluh et al., 2004) as well as prevascularized bioartificial tissue
constructs (Laschke and Menger, 2016). For this purpose, the grafts’
preformed microvessels wrap around the microvessels of the sur-
rounding host tissue and express high levels of MMP-14 and MMP-9
(Cheng et al., 2011). This causes basement membrane and pericyte
reorganization and localized disruption of the underlying host endo-
thelium, resulting in the inflow of blood into the preformed micro-
vascular network (Cheng et al., 2011).

9Vascularization in endometriosis

Downloaded from https://academic.oup.com/humupd/advance-article-abstract/doi/10.1093/humupd/dmy001/4825063
by guest
on 30 January 2018



A common approach for the artificial induction of endometriotic
lesions in non-menstruating rodents is the transplantation of isolated
endometrial tissue fragments from the uterus of donor animals to
ectopic sites (Grümmer, 2006). These fragments exhibit a physio-
logical tissue architecture with fully functional microvascular networks
at the time point of harvesting. Accordingly, their engraftment is asso-
ciated with inosculation (Feng et al., 2014). Considering Sampson’s
implantation theory, inosculation may not only be an important
mechanism of vascularization under these experimental conditions,
but also in clinical endometriosis. In line with this view, tissue integrity
has been shown to be crucial for the ectopic implantation of human
endometrium, whereas transplantation of dispersed endometrial cells
from menstrual effluent does not result in lesion formation (Nap
et al., 2003).

Regulation
Inosculation is characterized by the close interaction of the pre-
formed microvascular network within a tissue graft and the surround-
ing host microvasculature. Hypoxia-driven release of angiogenic
growth factors from the graft stimulates the ingrowth of vascular
sprouts from the host tissue, which internally inosculate with the pre-
formed microvessels (Laschke et al., 2009). On the other hand, the
high angiogenic activity of the preformed microvascular network may
also promote the outgrowth of blood vessels from the graft into the
surrounding host tissue, where external inosculation is achieved
(Laschke et al., 2010). In line with these findings, Eggermont et al.
(2005) observed that the revascularization of human endometrial
implants in nude mice involves the disappearance of native graft ves-
sels, which coincides with the invasion of the endometrial stroma by
murine vessels. In contrast, Machado et al. (2014) found after trans-
plantion of endometrial fragments from GFP+ donor mice into the
peritoneal cavity of GFP− wild-type mice that most of the grafts’
blood vessels consisted of GFP+ cells. Intravital fluorescence micros-
copy of GFP+ endometrial fragments in a mouse dorsal skinfold
chamber model even demonstrated the outgrowth of GFP+ vascular
sprouts over time and their final inosculation in the GFP− host tissue
(Feng et al., 2014).

Taken together, these results indicate that dependent on the
experimental setting, both internal and external inosculation contrib-
ute to the vascularization of engrafting endometriotic lesions. Hence,
these different vascularization modes may also determine the fate of
menstruated endometrial fragments in women and, thus, the risk of
developing endometriosis. In fact, it may be speculated that external
inosculation particularly contributes to the rapid vascularization and
successful engraftment of shed endometrial fragments in the periton-
eal cavity. External inosculation, however, requires viable and well
preserved microvascular networks within the fragments. Because the
fragments solely survive by diffusion and suffer from hypoxia during
retrograde menstruation through the Fallopian tubes, the survival of
their microvasculature is crucially determined by the time period that
they need to reach the peritoneal cavity. Hence, although not further
analyzed so far, it may be hypothesized that uterine hyperperistalsis,
as observed in endometriosis patients (Bulletti et al., 2004; Leyendecker
and Wildt, 2011), accelerates the transport of the endometrial frag-
ments and, thus, essentially shortens this critical time period. Another
prerequisite for external inosculation is a high sprouting angiogenic

activity of the preformed microvessels within endometrial fragments.
This may be supported by the fact that numerous signaling pathways,
including COX-2 and Notch, are dysregulated in the eutopic endo-
metrium of women with endometriosis (Su et al., 2015; Logan et al.,
2018). Accordingly, excessive endometrial angiogenesis has been
found in women with endometriosis when compared to healthy
subjects (Healy et al., 1998; Burlev et al., 2005). The endometrium
of endometriosis patients shows an up-regulated or dysregulated
expression of several angiogenic factors, including VEGF (Hey-
Cunningham et al., 2013), Ang-1/2 (Hur et al., 2006), tissue factor
(Krikun et al., 2008), pleiotrophin and midkine (Chung et al., 2002)
and contains more blood vessels expressing the cell adhesion mol-
ecule integrin αVβ3 (Healy et al., 1998). In addition, it contains an
increased number of proliferating endothelial cells (Wingfield et al.,
1995). In summary, these alterations may promote external inoscu-
lation and, thus, improve the capacity of endometrial tissue from
women with endometriosis to proliferate, implant and grow within
the peritoneal cavity (Fig. 3).

Clinical implications
The existence of preformed, mature microvessels in engrafting endome-
triotic lesions complicates the establishment of anti-angiogenic strategies
for the treatment of endometriosis. Such microvessels are covered by
pericytes, which stabilize their vascular wall and protect them against
anti-VEGF therapies (Helfrich and Schadendorf, 2011). Therefore,
approaches targeting the pericyte–endothelial cell interaction may be
much more effective. In line with this view, selective blockade of VEGF
by means of the small molecule tyrosine kinase inhibitor SU5416 only
slightly reduces the microvessel density of murine endometriotic lesions

Figure 3 Basic mechanisms (marked in green), which may deter-
mine the fate of menstruated endometrial fragments in women and,
thus, the risk of developing endometriosis.

10 Laschke and Menger

Downloaded from https://academic.oup.com/humupd/advance-article-abstract/doi/10.1093/humupd/dmy001/4825063
by guest
on 30 January 2018



when compared to vehicle-treated controls (Laschke et al., 2006b)
(Fig. 4). In contrast, combined inhibition of VEGF, FGF and platelet-
derived growth factor (PDGF) by SU6668 significantly suppresses the
vascularization of the lesions, which is associated with an inhibition of
blood vessel maturation (Laschke et al., 2006b) (Fig. 4).

A possible alternative for the destruction of mature microvascular
networks in endometriotic lesions are vascular-disrupting agents
(VDAs) (Van Langendonckt et al., 2008), which have emerged as a
promising novel drug class for the treatment of tumors (Porcù et al.,
2014). VDAs destabilize the microtubular cytoskeleton of proliferat-
ing endothelial cells and increase the interstitial pressure by enhancing
microvascular permeability (Tozer et al., 2005). This causes rapid ves-
sel collapse and shutdown of blood perfusion. Hence, VDAs are
most effective in tumors that exhibit many proliferating endothelial

cells and large numbers of immature microvessels (West and Price,
2004), similar to early red endometriotic lesions. However, even old-
er black endometriotic lesions occassionally contain immature micro-
vessels (Matsuzaki et al., 2001a), most probably due to continuous
microvascular remodeling.

In a proof-of-principle study Feng et al. (2013) treated engrafting
murine endometriotic lesions with a single injection of combretastatin
A4 phosphate (CA4P), which is the leading tubulin-binding VDA. This
resulted in a short-term selective vessel collapse in the lesions with-
out affecting the blood perfusion of the surrounding host tissue
microvasculature. However, this short-term effect of CA4P did not
affect the further development of the lesions, indicating that repetitive
doses or different application schemes should be additionally tested
to improve the therapeutic efficiency of this approach. As already

Figure 4 Suppression of vascularization in endometriotic lesions by combined inhibition of VEGF, FGF and PDGF. (A, B) Intravital fluorescence
microscopy of the microangioarchitecture of endometriotic lesions at Day 14 after autologous transplantation of endometrial grafts into the dorsal
skinfold chamber of a control (A) and a SU6668-treated (B) Syrian golden hamster. The anti-angiogenic effect of SU6668 is reflected in a
decreased microvessel density of the newly formed microvascular network within the lesion (B). Moreover, the compound suppresses vessel
maturation, as indicated by large vessel calibers and vessel wall irregularities (B). Blue-light epi-illumination with contrast enhancement by 5%
FITC-labeled dextran 150 000 i.v. Scale bars: 75 μm. (C) Microvessel density (cm/cm2) of endometriotic lesions in control (closed triangles),
SU5416-treated (open circles) and SU6668-treated (closed circles) Syrian golden hamsters, as assessed by intravital fluorescence microscopy and
computer-assisted image analysis. Data are given as the mean ± SEM. *P < 0.05 versus control animals; #P < 0.05 versus SU5416-treated animals;
aP < 0.05 versus Day 0 within each individual group; bP < 0.05 versus Days 0 and 2 within each individual group. The figure is reprinted from
Laschke et al. (2006b); used with permission from Oxford University Press.
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discussed for anti-angiogenic compounds, it further has to be con-
sidered that the treatment of endometriosis with VDAs is only a realis-
tic option in case of a tolerable side effect profile. With this claim in
mind, Krikun et al. (2010) described an anomalous expression of tissue
factor by endothelial cells in endometriotic lesions. The immunoconju-
gate molecule (Icon) binds with high affinity and specificity to this aber-
rant tissue factor, which induces a cytolytic immune response and vessel
disruption (Hu and Garen, 2001). Accordingly, they further demon-
strated in an athymic mouse model of endometriosis that Icon destroys
endometriotic lesions by vascular disruption without apparent toxicity,
reduced fertility or teratogenic effects (Krikun et al., 2010).

Conclusions
Blood vessel formation is a major hallmark in the pathogenesis
of endometriosis. The vascularization of endometriotic lesions is
complex and involves angiogenesis, vasculogenesis and inosculation.
Targeting these processes offers the possibility to develop novel strat-
egies for the future diagnosis and therapy of endometriosis (Table II).
However, essential challenges remain to achieve this goal. For diagnostic
purposes, it will be necessary to identify reliable angiogenic and vasculo-
genic biomarkers or biomarker panels, which allow the identification of
endometriosis with a high sensitivity and specificity. The establishment of
novel therapeutic approaches is hampered by the heterogeneous nature
of the disease with different lesion types that markedly differ in terms
of their angiogenic activity and microvascular network composition. In
addition, the safety requirements are high for the treatment of young
women, who desire to have children. Hence, it will be necessary to iden-
tify novel compounds which selectively target the vascularization of endo-
metriotic lesions without inducing severe side effects and affecting fertility
or pregnancy. Recent progress in the field of endometriosis research indi-
cates that these hurdles may be taken in the near future. This may offer
more effective and satisfactory diagnostic and therapeutic solutions for
patients suffering from this debilitating disease.
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