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Abstract

Endometriosis is a common gynecological disease that causes various clinical symptoms, such as chronic pel-
vic pain, dysmenorrhea and infertility, seriously affecting women’s health and their quality of life. The
symptoms and endometriotic lesions are relieved, in many cases, after menopause, when estrogen levels are
lowered. Therefore, endometriosis is considered to be estrogen-dependent. Aromatase, the enzyme responsi-
ble for the last step of estrogen biosynthesis converting testosterone and androgen to estrogen, was previ-
ously reported to be more abundant in endometriotic tissues than in the normal endometrium, leading to an
increased local estrogen concentration. Therefore, aromatase is considered a key therapeutic target for regu-
lating local estrogen biosynthesis in endometriosis. A more complete understanding of the mechanisms that
modulate aromatase and its activity is required to develop novel estrogen-targeted therapies for endometri-
osis. In this review article, we outline the current understanding of the pathological processes involved in
estrogen production in endometriosis and propose novel strategies to treat this disorder.
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Introduction

Endometriosis is a common gynecological disease
characterized by the presence and growth of
endometrium-like tissues at extrauterine sites. The
morbidity of endometriosis reaches approximately
6–10% in women of reproductive age and causes vari-
ous clinical symptoms, such as chronic pelvic pain,
dysmenorrhea and infertility, seriously reducing
women’s health and their quality of life.1 Although
studies regarding the histological origin of endometri-
osis have been conducted, the exact etiology of the
disease remains poorly understood.
Accumulating evidence has shown that local estro-

gen production plays a key role in the pathogenesis of
endometriosis.2 Indeed, the symptoms and endome-
triotic lesions are relieved, in many cases, after meno-
pause. Therefore, endometriosis is considered to be
estrogen-dependent. Existing treatment options for
endometriosis include gonadotropin-releasing

hormone (GnRH) agonists, oral contraceptives
(OC) and progestogens, as well as androgens and
nonsteroidal anti-inflammatory agents.3,4 Currently,
the successful treatment of endometriosis-associated
pain is based on suppressing estrogen production.
Despite the benefits of these hormonal medications,
GnRH agonists can be only used for a limited time
due to unacceptable side-effects, such as osteoporosis
and climacteric disorders. In addition, hormonal med-
ications, including GnRH agonists and OC, are not
suitable for patients attempting to conceive because
they suppress ovulation. Accordingly, it is crucial to
develop a novel therapeutic strategy that is more
effective and has fewer side-effects in patients with
endometriosis. To achieve this purpose, a more
detailed understanding of the molecular and patho-
logical significance of endometriosis is required.

Aromatase is the enzyme responsible for the last
step of estrogen biosynthesis. Our group, and other
investigators, demonstrated that aromatase is more
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abundant in endometriotic tissues than normal endo-
metrium, leading to an increased local estrogen
concentration.5–7 Developing therapeutic strategies
that target local estrogen formation may be a promis-
ing approach to treat this disorder. Here, we outline
the current understanding of the pathological process
via estrogen production in endometriosis.

Expression of Aromatase in
Endometriosis

Aromatase converts testosterone and androstenedione
to estradiol (E2) and estrone (E1), respectively. Aroma-
tase is expressed in a number of human tissues and
cells, such as ovarian granulosa cells, adipose tissue,
skin fibroblasts, placental syncytiotrophoblasts, osteo-
blasts and brain. In women of reproductive age, aro-
matase is most potently and periodically secreted by
the ovary. Ovarian granulosa cells express high levels
of aromatase under the influence of follicle-
stimulating hormone (FSH).8,9 On the other hand, in
postmenopausal women, estrogen formation occurs in
extraglandular sites such as adipose tissue and skin.10

The main substrate of aromatase in adipose and skin
tissues is androstenedione secreted from adrenal tis-
sues. In postmenopausal women, approximately 2%
of circulating androstenedione is converted by aroma-
tase to E1, which is further converted to E2 by 17ß-
hydroxysteroid dehydrogenase type 1 (17ß-HSD1) in
peripheral tissues. High levels of E2 in serum lead to
endometrial hyperplasia and endometrial cancer.11

Interestingly, aromatase is expressed at higher
levels in breast cancer than normal breast tissues.12–14

The estrogens produced in situ, due to overexpression
of aromatase in breast cancer cells, is thought to play
a more crucial role in stimulating cancer cell growth
than circulating estrogen.15 In endometrial cancer,
aromatase is also highly expressed, although the
expression is low or not detected in normal endome-
trium and endometrial hyperplasia.16,17 Furthermore,
the expression of aromatase in stromal cells is associ-
ated with unfavorable survival in patients with endo-
metrial cancer.18

Like estrogen-dependent cancers, accumulating evi-
dence demonstrates high levels of aromatase expres-
sion in endometriosis.5,19–22 Noble et al. first reported
that aromatase was detected in endometriotic implants
in much larger amounts than in eutopic endometrium,
although it was not detected in normal endometrium
in disease-free women. Using immunohistochemistry

analysis and a catalytic activity assay, in addition to
the reverse transcription polymerase chain reaction,
our group showed that local estrogen production by
aberrantly elevated aromatase takes place in endome-
triotic and adenomyosis, not in normal endometrium.5

Another group recently examined tissue estrogen con-
centrations in normal endometrium throughout the
menstrual cycle and in different types of endometriotic
lesions, including peritoneum, ovarian endometrium
and deep endometriosis.22 They showed that ovarian
endometriotic lesions presented with markedly higher
intratissue estrogen concentrations than normal endo-
metrium and peritoneal and deep endometriosis. They
also demonstrated that the expression of aromatase
mRNA was significantly higher in the proliferative/
secretory menstrual phase of ovarian endometrioma
and in the proliferative phase of deep endometriosis.22

These findings confirmed that aromatase played a crit-
ical role in local estrogen production, especially in
ovarian endometriosis. This suggests the existence of
autocrine and paracrine sources for estrogens in local
lesions.

Regulation of Aromatase Expression in
Endometriosis

The human aromatase gene was mapped to chromo-
some 15, band q21 by in situ hybridization studies
and was confirmed by recent human genome analy-
sis.23 The gene consists of nine coding exons. The
ATG translation start site is located in coding exon II,
and upstream of the gene, there are a number of pro-
moters; at least eight untranslated exons/promoters
(I.1, I.2, I.3, I.4, I.5, I.6, I.7, and PII) have been
identified.
A complex mechanism is involved in the control

of human aromatase expression. Various exon
I-containing mRNAs are present at different levels in
different tissues and cells. Aromatase expression in
tissues is driven by the promoters situated upstream
of the exons. To determine tissue-specific promoter
usage, the real-time polymerase chain reaction using
exon I-specific promoters was performed. Transcripts
of exon I.I, located most distally upstream from the
coding region, were elevated in placental trophoblast
cells to maintain a high level of aromatase expres-
sion.24 In breast cancer specimens, exons I.3 and PII
were the major exons present in aromatase mRNA
transcripts.12,14,25 In contrast, exons/promoter I.3 and
II were used only minimally in normal breast adipose
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tissues, and a low level of aromatase was expressed
via exons/promoter I.4 in the tissue.26. These findings
suggest that there is a shift of the regulatory mecha-
nism of aromatase expression from normal breast adi-
pose tissue to cancer tissues.
In endometriotic tissues, exons/promoter I.3 and

PII are considered the main promoters. This was
recently confirmed by our group21,27 (Fig. 1). Levels
of aromatase are stimulated markedly by cyclic aden-
osine monophosphate (cAMP) analogs or prostaglan-
din (PG)E2 in endometriotic stromal cells.20 PGE2

formation is stimulated by the cyclooxygenase type
2 (COX-2) enzyme in endometriotic stromal cells.28

Furthermore, estrogen has been linked directly to the
promotion of inflammation, as evidenced by the
estrogen-mediated induction of various cytokines in
cells.29 These cytokines, including interleukin (IL)-6
and IL-8, as well as PGE2 and COX-2, can stimulate
hormone synthesis and regulate the activation of pro-
survival signaling pathways.30 PGE2 also enhances
the expression of steroidogenic acute regulatory pro-
tein, which is an enzyme elevated in endometriotic
stromal cells that could facilitate the entry of choles-
terol into mitochondria, leading to the production of
steroid hormones. These findings suggest that there is
a feed-forward mechanism in the overproduction of

estrogen, PGE2 and cytokines that promotes the per-
sistence of endometriotic lesions.31

Interaction of Transcription Factors with
the Regulation of Aromatase in
Endometriosis

It is important to understand the regulatory mecha-
nism of aromatase in normal ovarian granulosa cells
during the menstrual cycle. As described before, aro-
matase converts androstenedione and testosterone to
E1 and E2, respectively. The serum E2 level reaches a
peak just before ovulation. Thereafter, estrogen con-
tinue to be secreted from the corpus luteum at a lower
level. Once FSH secreted from the pituitary gland
binds to G protein-coupled receptors in the granulosa
cell membrane, the intracellular level of cAMP is
strongly elevated. Steroidogenic factor-1 (SF-1) and
the cAMP response element-binding protein are then
recruited to bind to aromatase promoter II, leading to
estrogen production at the preovulatory phase.32,33

In endometriotic lesions, a previous report showed
that aromatase expression, stimulated by cAMP ana-
logs and PGE2, was regulated by the binding of SF-1
to the nuclear receptor half-site upstream of the aro-
matase gene promoter II.27 On the other hand,
chicken ovalbumin upstream promoter-transcription
factor (COUP-TF) is an inhibitor of aromatase expres-
sion. COUP-TF is expressed in both eutopic and nor-
mal endometrium, whereas SF-1 is expressed in
endometriosis but not in normal eutopic endometrial
cells. COUP-TF competes for the same binding site as
SF-1 in promoter II of aromatase. In addition, pro-
moters I.3 and II in endometriosis are regulated by
many other transcription factors, including Wilms’
tumor-1, CCAAT-enhancer binding protein (C/EBP)α
and C/EBPβ, DAX-1 (dosage-sensitive sex reversal,
adrenal hypoplasia critical region, on chromosome X,
gene 1) and liver receptor homolog-1.6 Wilms’ tumor-
1 functions as a corepressor of SF-1 on the nuclear
half-site of aromatase promoters I.3 and II, similar to
COUP-TF. C/EBPα and C/EBPβ bind to the −211/
−197 cAMP response element site located just
upstream of the nuclear half-sites of aromatase PI.3
and II. C/EBPα functions as an enhancer, whereas
C/EBPβ is an inhibitor of aromatase expression.6

C/EBPβ is also downregulated selectively in endome-
triosis but not in eutopic endometrium. DAX-1 acts as
a dominant-negative regulator of SF-1 transcription.34

Figure 1 Aromatase exon Is specific RT-PCR. The
bands of PI.3, PII and exon II without detection of
PI.1, I.4 and I.6 amplifications in endometrial stromal
cells from ovarian endometrioma (OESC) suggested
that the main aromatase promoters used in endome-
triosis were PI.3 and PII. In contrast, basal aromatase
transcription in endometrial stromal cells from euto-
pic endometrium (EESC) and the cells from normal
endometrium (NESC) were not detected.
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Gurates et al. demonstrated that it inhibited
SF-1-dependent expression of aromatase in endome-
triosis.35,36 Thus, these findings indicate that transcrip-
tion factors play important roles in the differential
modulation of aromatase expression between endo-
metriotic tissues and eutopic/normal endometrium.

We previously focused on the expression and func-
tion of estrogen-related receptors (ERR). ERRα, one of
the subtypes, is an orphan nuclear receptor without
known endogenous ligands. Interestingly, Sasano
et al. reported microarray expression profiling and
clustering analysis using specimens from breast can-
cer tissues that showed a significant positive correla-
tion between ERRα and aromatase expression.37 We
examined the expression patterns of ERRα and aro-
matase in endometriotic tissues. However, ERRα was
not highly expressed. Rather, peroxisome proliferator-
activated receptor gamma (PPARγ) and coactivator-
1α (PGC-1α), known as a representative coactivator of
ERRα, were elevated significantly in endometriosis
and were coexpressed with aromatase.21

PGC-1α is a coactivator that interacts with a broad
range of transcription factors involved in various bio-
logical responses, including adaptive thermogenesis,
mitochondrial biogenesis, oxidative metabolism and

steroidogenesis.38–40 For example, in brown adipose
tissue, PGC-1α is induced by exposure to cold and
coactivates PPARγ to stimulate adipocyte differentia-
tion.41 In addition, PGC-1α regulates progesterone
production in ovarian granulosa cells as a coactivator
of SF-1 and liver receptor homolog-1.40 Other investi-
gators showed that, in skeletal muscle cells, PGC-1α
downregulated the expression of insulin-sensitive glu-
cose transporter type 4 and was involved in glucose
uptake.42 Thus, PGC-1α is differentially expressed in
different tissues and functions as a coactivator inter-
acting with tissue-specific transcription factors.
Our previous studies on endometriosis found that

PGC-1α was elevated aberrantly in ovarian endome-
trioma, correlating with the localization of aromatase in
tissues (Fig. 2). We also showed that PGC-1α overex-
pression increased aromatase promoter I.3/II activity
and the aromatase mRNA expression level in stromal
cells from ovarian endometrioma (Fig. 3). The chroma-
tin immunoprecipitation assay revealed the recruitment
of endogenous PGC-1α to the nuclear receptor half-site,
50-AGGTCA-30. Our preliminary results also showed
that retinoid X receptor α was one nuclear receptor able
to regulate aromatase in endometriosis in cooperation
with PGC-1α. It is also interesting that TNF-α,

Figure 2 Immunohistochemical expression of PGC-1α and aromatase in specimens from ovarian endometrioma and nor-
mal endometrium.
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produced by peritoneal macrophage and endometriotic
tissue, stimulates PGC-1α transcription in endometrial
stromal cells from ovarian endometrioma (Fig. 4). Fur-
ther investigations are needed to understand the regu-
lation of aromatase in endometriosis.

Aromatase-Targeting Treatment in
Endometriosis

Endocrine preparations currently recommended for the
treatment of endometriosis include OC, progestogens
and GnRH agonists. OC are widely used in women

with chronic pelvic pain and clinically suspected endo-
metriosis. These drugs inhibit ovulation and substan-
tially reduce the volume of menstrual flow. Progestins
have also been used in the management of symptom-
atic endometriosis. Progestins occasionally inhibit the
hypothalamic-pituitary-ovarian axis, leading to anovu-
lation, reduction of the serum E2 level and atrophy of
eutopic/ectopic endometrium.

Dienogest, a fourth-generation progestin, has
potent oral progesterone activity without any sys-
temic androgenic activity.43 Previous randomized tri-
als demonstrated that long-term use of dienogest
exerted a potent effect in relieving endometriosis-
associated pelvic pain.44,45 Accumulating evidence
showed that dienogest directly inhibited progester-
one receptor-mediated cell proliferation46 and the
production of inflammatory cytokines,47,48 toll-like
receptor 449 and nerve growth factor.50 Our group
showed, using spheroid cultures of endometriotic
stroma cells, that dienogest reduced the expression
of aromatase and the expression and enzyme activity
of 17ß-HSD1, which catalyze the conversion of less
potent E1 to the more potent E2 form in tissues.51,52

These findings suggest that dienogest comprehen-
sively inhibits abnormal estrogen production in
endometriosis.

GnRH agonists induce pharmacological menopause
by decreasing the production of gonadotropins
and suppressing ovulation to reduce ovarian

Figure 3 Luciferase activities of aromatase promoter PI.3-II with/without real-time PCR analysis of aromatase and SF-1
with/without PGC-1α overexpression. Luciferase activities were determined by the Dual Luciferase Reporter assay sys-
tem. The RLU represents the relative ratio of luminescence intensity with PGC-1α overexpression to without overexpres-
sion. The nuclear receptor half-site (5’-AGGTCA-30) in aromatase promoter reporter plasmid (original) was changed to
5’-ACGACT-30 (mutation) using QuickChange Lightning (Agilent Technologies).

Figure 4 The vicious cycle of local estrogen production
during endometriosis through PGC-1α and TNF-α.
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steroidogenesis. GnRH agonists can achieve relief of
moderate to severe pelvic pain of endometriosis.53

However, long-term use of GnRH agonists is
associated with hypoestrogenic side-effects and a sub-
stantial reduction in bone mineral density.54 Conse-
quently, pelvic pain often recurs after completion of
GnRH agonist treatment; the median interval until
recurrence of pain is 6.1 months.55 There are two
main reasons for the failure of GnRH agonist treat-
ment of endometriosis. One explanation is that local
estrogen secretion from the ovary resumes after com-
pletion of the treatment and contributes to the devel-
opment of endometriotic lesions. Another is that
GnRH agonists affect only the hypothalamo-pituitary-
gonadal axis but do not cover extraglandular sites of
estrogen biosynthesis in women. Therefore, estrogen
production occurs in adipose tissue, skin and local
endometriotic lesions during the treatment.

Aromatase inhibitors (AI) are another therapeutic
option for patients with endometriosis. Third-
generation AIs, such as anastrozole, letrozole and
exemestane, are currently used widely for postmeno-
pausal patients with hormone-dependent breast
cancers.56 Side-effects of the AI include vaginal
dryness, hot flushes, headache, numbness in lower
extremities and arthralgia. It is considered that AI are
likely to maintain low estrogen levels in extraovarian
sites during the treatment. However, AI administered
in premenopausal women increase FSH levels
through positive feedback of the hypothalamo-pitui-
tary-gonadal axis, sometimes leading to the develop-
ment of ovarian cysts. Therefore, it is necessary to use

AI in combination with progestins, OC and GnRH
agonists for women of reproductive age with
endometriosis.
A meta-analysis of eight trials that enrolled

137 women showed that AI, in combination with pro-
gestins, OC or GnRH agonists, relieved endometriosis-
associated pain, reduced the size of extrauterine
endometrial lesions and improved the quality of life.57

A more recent meta-analysis of 10 trials that enrolled
251 women reported similar results.58 Taken together,
the European Society of Human Reproduction and
Embryology (ESHIRE) guidelines recommend the con-
comitant use of AI with OC, progestins or GnRH ago-
nists for patients with pain from rectovaginal
endometriosis, refractory to other medical or surgical
treatments.59

Isoflavones are plant-derived nonsteroidal com-
pounds that possess weak estrogenic activity. Isofla-
vones exert estrogen-like activity due to their
structural similarities to E2, but also exert antiestro-
genic effects in reproductive-aged women with high
estrogen levels.60 Previous studies investigated the
effect of isoflavones on endometriosis. Puerarin and
parthenolide, two flavonoids, inhibited the prolifera-
tion of oral epithelial stem cells.61,62 Other investiga-
tors showed that genistein caused regression of an
endometriotic implant using a rat model.63 Our group
recently demonstrated that daidzein-rich isoflavone
aglycones (DRIA) suppressed cell proliferation in oral
epithelial but not in neuroepithelial stem cells at clini-
cally feasible concentrations.64 The effect was most
likely mediated by PGE2 formation via the inhibition

Figure 5 (a) Representative endometriosis-like cystic lesions in the abdominal cavity of recipient mice fed with normal
food (Cont), DRIA-containing food (DRIAs) or Isoflavone-40-containing food (Iso-40). Comparison of lesions in total
number (b), weight (c) between the control (open bars), DRIA (solid bars) and Isoflavone-40 treatments (dotted bars). **P <
0.01. NS indicates not significant.
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of aromatase expression/activity and COX-2 expres-
sion. In addition, DRIA inhibited the formation of
endometriosis-like lesions in an in vivo mouse model,
indicating that they might be useful for the treatment
of endometriosis64 (Fig. 5). Clinical trials will be nec-
essary to clarify the effect of DRIA in patients with
endometriosis.

Conclusions

Endometriosis is apparently an estrogen-dependent
disease. Suppression of in situ estrogen biosynthesis
can be achieved by preventing aromatase expression
and activity in patients with endometriosis. An under-
standing of the regulatory mechanism for the expres-
sion of aromatase in endometriosis will provide
useful information concerning aberrant estrogen pro-
duction in local lesions. Novel treatment strategies to
control estrogen biosynthesis in endometriosis tissues
could be designed to more effectively control this
disorder.
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